Multimodal and Tensor Data Analytics for Industrial Systems Improvement

Download Multimodal and Tensor Data Analytics for Industrial Systems Improvement PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031530926
Total Pages : 388 pages
Book Rating : 4.0/5 (315 download)

DOWNLOAD NOW!


Book Synopsis Multimodal and Tensor Data Analytics for Industrial Systems Improvement by : Nathan Gaw

Download or read book Multimodal and Tensor Data Analytics for Industrial Systems Improvement written by Nathan Gaw and published by Springer Nature. This book was released on with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Synthetic Data and Generative AI

Download Synthetic Data and Generative AI PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0443218560
Total Pages : 410 pages
Book Rating : 4.4/5 (432 download)

DOWNLOAD NOW!


Book Synopsis Synthetic Data and Generative AI by : Vincent Granville

Download or read book Synthetic Data and Generative AI written by Vincent Granville and published by Elsevier. This book was released on 2024-01-09 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Synthetic Data and Generative AI covers the foundations of machine learning, with modern approaches to solving complex problems and the systematic generation and use of synthetic data. Emphasis is on scalability, automation, testing, optimizing, and interpretability (explainable AI). For instance, regression techniques – including logistic and Lasso – are presented as a single method, without using advanced linear algebra. Confidence regions and prediction intervals are built using parametric bootstrap, without statistical models or probability distributions. Models (including generative models and mixtures) are mostly used to create rich synthetic data to test and benchmark various methods. - Emphasizes numerical stability and performance of algorithms (computational complexity) - Focuses on explainable AI/interpretable machine learning, with heavy use of synthetic data and generative models, a new trend in the field - Includes new, easier construction of confidence regions, without statistics, a simple alternative to the powerful, well-known XGBoost technique - Covers automation of data cleaning, favoring easier solutions when possible - Includes chapters dedicated fully to synthetic data applications: fractal-like terrain generation with the diamond-square algorithm, and synthetic star clusters evolving over time and bound by gravity

Handbook of Regression Methods

Download Handbook of Regression Methods PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351650742
Total Pages : 507 pages
Book Rating : 4.3/5 (516 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Regression Methods by : Derek Scott Young

Download or read book Handbook of Regression Methods written by Derek Scott Young and published by CRC Press. This book was released on 2018-10-03 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Regression Methods concisely covers numerous traditional, contemporary, and nonstandard regression methods. The handbook provides a broad overview of regression models, diagnostic procedures, and inference procedures, with emphasis on how these methods are applied. The organization of the handbook benefits both practitioners and researchers, who seek either to obtain a quick understanding of regression methods for specialized problems or to expand their own breadth of knowledge of regression topics. This handbook covers classic material about simple linear regression and multiple linear regression, including assumptions, effective visualizations, and inference procedures. It presents an overview of advanced diagnostic tests, remedial strategies, and model selection procedures. Finally, many chapters are devoted to a diverse range of topics, including censored regression, nonlinear regression, generalized linear models, and semiparametric regression. Features Presents a concise overview of a wide range of regression topics not usually covered in a single text Includes over 80 examples using nearly 70 real datasets, with results obtained using R Offers a Shiny app containing all examples, thus allowing access to the source code and the ability to interact with the analyses

Multisensor Data Fusion and Machine Learning for Environmental Remote Sensing

Download Multisensor Data Fusion and Machine Learning for Environmental Remote Sensing PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498774342
Total Pages : 508 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Multisensor Data Fusion and Machine Learning for Environmental Remote Sensing by : Ni-Bin Chang

Download or read book Multisensor Data Fusion and Machine Learning for Environmental Remote Sensing written by Ni-Bin Chang and published by CRC Press. This book was released on 2018-02-21 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last few years the scientific community has realized that obtaining a better understanding of interactions between natural systems and the man-made environment across different scales demands more research efforts in remote sensing. An integrated Earth system observatory that merges surface-based, air-borne, space-borne, and even underground sensors with comprehensive and predictive capabilities indicates promise for revolutionizing the study of global water, energy, and carbon cycles as well as land use and land cover changes. The aim of this book is to present a suite of relevant concepts, tools, and methods of integrated multisensor data fusion and machine learning technologies to promote environmental sustainability. The process of machine learning for intelligent feature extraction consists of regular, deep, and fast learning algorithms. The niche for integrating data fusion and machine learning for remote sensing rests upon the creation of a new scientific architecture in remote sensing science that is designed to support numerical as well as symbolic feature extraction managed by several cognitively oriented machine learning tasks at finer scales. By grouping a suite of satellites with similar nature in platform design, data merging may come to help for cloudy pixel reconstruction over the space domain or concatenation of time series images over the time domain, or even both simultaneously. Organized in 5 parts, from Fundamental Principles of Remote Sensing; Feature Extraction for Remote Sensing; Image and Data Fusion for Remote Sensing; Integrated Data Merging, Data Reconstruction, Data Fusion, and Machine Learning; to Remote Sensing for Environmental Decision Analysis, the book will be a useful reference for graduate students, academic scholars, and working professionals who are involved in the study of Earth systems and the environment for a sustainable future. The new knowledge in this book can be applied successfully in many areas of environmental science and engineering.

Sufficient Dimension Reduction

Download Sufficient Dimension Reduction PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498704484
Total Pages : 307 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Sufficient Dimension Reduction by : Bing Li

Download or read book Sufficient Dimension Reduction written by Bing Li and published by CRC Press. This book was released on 2018-04-27 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sufficient dimension reduction is a rapidly developing research field that has wide applications in regression diagnostics, data visualization, machine learning, genomics, image processing, pattern recognition, and medicine, because they are fields that produce large datasets with a large number of variables. Sufficient Dimension Reduction: Methods and Applications with R introduces the basic theories and the main methodologies, provides practical and easy-to-use algorithms and computer codes to implement these methodologies, and surveys the recent advances at the frontiers of this field. Features Provides comprehensive coverage of this emerging research field. Synthesizes a wide variety of dimension reduction methods under a few unifying principles such as projection in Hilbert spaces, kernel mapping, and von Mises expansion. Reflects most recent advances such as nonlinear sufficient dimension reduction, dimension folding for tensorial data, as well as sufficient dimension reduction for functional data. Includes a set of computer codes written in R that are easily implemented by the readers. Uses real data sets available online to illustrate the usage and power of the described methods. Sufficient dimension reduction has undergone momentous development in recent years, partly due to the increased demands for techniques to process high-dimensional data, a hallmark of our age of Big Data. This book will serve as the perfect entry into the field for the beginning researchers or a handy reference for the advanced ones. The author Bing Li obtained his Ph.D. from the University of Chicago. He is currently a Professor of Statistics at the Pennsylvania State University. His research interests cover sufficient dimension reduction, statistical graphical models, functional data analysis, machine learning, estimating equations and quasilikelihood, and robust statistics. He is a fellow of the Institute of Mathematical Statistics and the American Statistical Association. He is an Associate Editor for The Annals of Statistics and the Journal of the American Statistical Association.

Analysis of Multivariate and High-Dimensional Data

Download Analysis of Multivariate and High-Dimensional Data PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521887933
Total Pages : 531 pages
Book Rating : 4.5/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Analysis of Multivariate and High-Dimensional Data by : Inge Koch

Download or read book Analysis of Multivariate and High-Dimensional Data written by Inge Koch and published by Cambridge University Press. This book was released on 2014 with total page 531 pages. Available in PDF, EPUB and Kindle. Book excerpt: This modern approach integrates classical and contemporary methods, fusing theory and practice and bridging the gap to statistical learning.

Foundations of Intelligent Systems

Download Foundations of Intelligent Systems PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030018512
Total Pages : 473 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Intelligent Systems by : Michelangelo Ceci

Download or read book Foundations of Intelligent Systems written by Michelangelo Ceci and published by Springer. This book was released on 2018-10-22 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the 24th International Symposium on Foundations of Intelligent Systems, ISMIS 2018, held in Limassol, Cyprus, in October 2018. The 32 full, 8 short, and 4 application papers presented in this volume were carefully reviewed and selected from 59 submissions. The papers deal with topics such as bioinformatics and health informatics, graph mining, image analysis, intelligent systems, mining complex patterns, novelty detection and class imbalance, social data analysis, spatio-temporal analysis, and topic modeling and opinion mining. In addition, three special sessions were organized, namely: Special Session on Granular and Soft Clustering for Data Science, Special Session on Intelligent Methodologies for Traffic Data Analysis and Mining, and Special Session on Advanced Methods in Machine Learning for Modeling Complex Data.

Mathematics for Machine Learning

Download Mathematics for Machine Learning PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108569323
Total Pages : 392 pages
Book Rating : 4.1/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Mathematics for Machine Learning by : Marc Peter Deisenroth

Download or read book Mathematics for Machine Learning written by Marc Peter Deisenroth and published by Cambridge University Press. This book was released on 2020-04-23 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Graph Embedding for Pattern Analysis

Download Graph Embedding for Pattern Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461444578
Total Pages : 264 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Graph Embedding for Pattern Analysis by : Yun Fu

Download or read book Graph Embedding for Pattern Analysis written by Yun Fu and published by Springer Science & Business Media. This book was released on 2012-11-19 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graph Embedding for Pattern Recognition covers theory methods, computation, and applications widely used in statistics, machine learning, image processing, and computer vision. This book presents the latest advances in graph embedding theories, such as nonlinear manifold graph, linearization method, graph based subspace analysis, L1 graph, hypergraph, undirected graph, and graph in vector spaces. Real-world applications of these theories are spanned broadly in dimensionality reduction, subspace learning, manifold learning, clustering, classification, and feature selection. A selective group of experts contribute to different chapters of this book which provides a comprehensive perspective of this field.

Advances in Multimedia Information Processing - PCM 2016

Download Advances in Multimedia Information Processing - PCM 2016 PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319488961
Total Pages : 762 pages
Book Rating : 4.3/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Advances in Multimedia Information Processing - PCM 2016 by : Enqing Chen

Download or read book Advances in Multimedia Information Processing - PCM 2016 written by Enqing Chen and published by Springer. This book was released on 2016-11-26 with total page 762 pages. Available in PDF, EPUB and Kindle. Book excerpt: The two-volume proceedings LNCS 9916 and 9917, constitute the proceedings of the 17th Pacific-Rim Conference on Multimedia, PCM 2016, held in Xi`an, China, in September 2016. The total of 128 papers presented in these proceedings was carefully reviewed and selected from 202 submissions. The focus of the conference was as follows in multimedia content analysis, multimedia signal processing and communications, and multimedia applications and services.

Computer Vision -- ECCV 2010

Download Computer Vision -- ECCV 2010 PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642155510
Total Pages : 834 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Computer Vision -- ECCV 2010 by : Kostas Daniilidis

Download or read book Computer Vision -- ECCV 2010 written by Kostas Daniilidis and published by Springer Science & Business Media. This book was released on 2010-08-30 with total page 834 pages. Available in PDF, EPUB and Kindle. Book excerpt: The six-volume set comprising LNCS volumes 6311 until 6313 constitutes the refereed proceedings of the 11th European Conference on Computer Vision, ECCV 2010, held in Heraklion, Crete, Greece, in September 2010. The 325 revised papers presented were carefully reviewed and selected from 1174 submissions. The papers are organized in topical sections on object and scene recognition; segmentation and grouping; face, gesture, biometrics; motion and tracking; statistical models and visual learning; matching, registration, alignment; computational imaging; multi-view geometry; image features; video and event characterization; shape representation and recognition; stereo; reflectance, illumination, color; medical image analysis.

Multivariate Reduced-Rank Regression

Download Multivariate Reduced-Rank Regression PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 1071627937
Total Pages : 420 pages
Book Rating : 4.0/5 (716 download)

DOWNLOAD NOW!


Book Synopsis Multivariate Reduced-Rank Regression by : Gregory C. Reinsel

Download or read book Multivariate Reduced-Rank Regression written by Gregory C. Reinsel and published by Springer Nature. This book was released on 2022-11-30 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an account of multivariate reduced-rank regression, a tool of multivariate analysis that enjoys a broad array of applications. In addition to a historical review of the topic, its connection to other widely used statistical methods, such as multivariate analysis of variance (MANOVA), discriminant analysis, principal components, canonical correlation analysis, and errors-in-variables models, is also discussed. This new edition incorporates Big Data methodology and its applications, as well as high-dimensional reduced-rank regression, generalized reduced-rank regression with complex data, and sparse and low-rank regression methods. Each chapter contains developments of basic theoretical results, as well as details on computational procedures, illustrated with numerical examples drawn from disciplines such as biochemistry, genetics, marketing, and finance. This book is designed for advanced students, practitioners, and researchers, who may deal with moderate and high-dimensional multivariate data. Because regression is one of the most popular statistical methods, the multivariate regression analysis tools described should provide a natural way of looking at large (both cross-sectional and chronological) data sets. This book can be assigned in seminar-type courses taken by advanced graduate students in statistics, machine learning, econometrics, business, and engineering.

Adversarial Machine Learning

Download Adversarial Machine Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030997723
Total Pages : 316 pages
Book Rating : 4.0/5 (39 download)

DOWNLOAD NOW!


Book Synopsis Adversarial Machine Learning by : Aneesh Sreevallabh Chivukula

Download or read book Adversarial Machine Learning written by Aneesh Sreevallabh Chivukula and published by Springer Nature. This book was released on 2023-03-06 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: A critical challenge in deep learning is the vulnerability of deep learning networks to security attacks from intelligent cyber adversaries. Even innocuous perturbations to the training data can be used to manipulate the behaviour of deep networks in unintended ways. In this book, we review the latest developments in adversarial attack technologies in computer vision; natural language processing; and cybersecurity with regard to multidimensional, textual and image data, sequence data, and temporal data. In turn, we assess the robustness properties of deep learning networks to produce a taxonomy of adversarial examples that characterises the security of learning systems using game theoretical adversarial deep learning algorithms. The state-of-the-art in adversarial perturbation-based privacy protection mechanisms is also reviewed. We propose new adversary types for game theoretical objectives in non-stationary computational learning environments. Proper quantification of the hypothesis set in the decision problems of our research leads to various functional problems, oracular problems, sampling tasks, and optimization problems. We also address the defence mechanisms currently available for deep learning models deployed in real-world environments. The learning theories used in these defence mechanisms concern data representations, feature manipulations, misclassifications costs, sensitivity landscapes, distributional robustness, and complexity classes of the adversarial deep learning algorithms and their applications. In closing, we propose future research directions in adversarial deep learning applications for resilient learning system design and review formalized learning assumptions concerning the attack surfaces and robustness characteristics of artificial intelligence applications so as to deconstruct the contemporary adversarial deep learning designs. Given its scope, the book will be of interest to Adversarial Machine Learning practitioners and Adversarial Artificial Intelligence researchers whose work involves the design and application of Adversarial Deep Learning.

Tensor Regression

Download Tensor Regression PDF Online Free

Author :
Publisher :
ISBN 13 : 9781680838862
Total Pages : pages
Book Rating : 4.8/5 (388 download)

DOWNLOAD NOW!


Book Synopsis Tensor Regression by : Jiani Liu

Download or read book Tensor Regression written by Jiani Liu and published by . This book was released on 2021-09-27 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensor Regression is the first thorough overview of the fundamentals, motivations, popular algorithms, strategies for efficient implementation, related applications, available datasets, and software resources for tensor-based regression analysis.

Matrix and Tensor Factorization Techniques for Recommender Systems

Download Matrix and Tensor Factorization Techniques for Recommender Systems PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319413570
Total Pages : 101 pages
Book Rating : 4.3/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Matrix and Tensor Factorization Techniques for Recommender Systems by : Panagiotis Symeonidis

Download or read book Matrix and Tensor Factorization Techniques for Recommender Systems written by Panagiotis Symeonidis and published by Springer. This book was released on 2017-01-29 with total page 101 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the algorithms used to provide recommendations by exploiting matrix factorization and tensor decomposition techniques. It highlights well-known decomposition methods for recommender systems, such as Singular Value Decomposition (SVD), UV-decomposition, Non-negative Matrix Factorization (NMF), etc. and describes in detail the pros and cons of each method for matrices and tensors. This book provides a detailed theoretical mathematical background of matrix/tensor factorization techniques and a step-by-step analysis of each method on the basis of an integrated toy example that runs throughout all its chapters and helps the reader to understand the key differences among methods. It also contains two chapters, where different matrix and tensor methods are compared experimentally on real data sets, such as Epinions, GeoSocialRec, Last.fm, BibSonomy, etc. and provides further insights into the advantages and disadvantages of each method. The book offers a rich blend of theory and practice, making it suitable for students, researchers and practitioners interested in both recommenders and factorization methods. Lecturers can also use it for classes on data mining, recommender systems and dimensionality reduction methods.

Modern Multidimensional Scaling

Download Modern Multidimensional Scaling PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475727119
Total Pages : 469 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Modern Multidimensional Scaling by : Ingwer Borg

Download or read book Modern Multidimensional Scaling written by Ingwer Borg and published by Springer Science & Business Media. This book was released on 2013-04-18 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multidimensional scaling (MDS) is a technique for the analysis of similarity or dissimilarity data on a set of objects. Such data may be intercorrelations of test items, ratings of similarity on political candidates, or trade indices for a set of countries. MDS attempts to model such data as distances among points in a geometric space. The main reason for doing this is that one wants a graphical display of the structure of the data, one that is much easier to understand than an array of numbers and, moreover, one that displays the essential information in the data, smoothing out noise. There are numerous varieties of MDS. Some facets for distinguishing among them are the particular type of geometry into which one wants to map the data, the mapping function, the algorithms used to find an optimal data representation, the treatment of statistical error in the models, or the possibility to represent not just one but several similarity matrices at the same time. Other facets relate to the different purposes for which MDS has been used, to various ways of looking at or "interpreting" an MDS representation, or to differences in the data required for the particular models. In this book, we give a fairly comprehensive presentation of MDS. For the reader with applied interests only, the first six chapters of Part I should be sufficient. They explain the basic notions of ordinary MDS, with an emphasis on how MDS can be helpful in answering substantive questions.

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow

Download Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 109812247X
Total Pages : 863 pages
Book Rating : 4.0/5 (981 download)

DOWNLOAD NOW!


Book Synopsis Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow by : Aurélien Géron

Download or read book Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow written by Aurélien Géron and published by "O'Reilly Media, Inc.". This book was released on 2022-10-04 with total page 863 pages. Available in PDF, EPUB and Kindle. Book excerpt: Through a recent series of breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This bestselling book uses concrete examples, minimal theory, and production-ready Python frameworks (Scikit-Learn, Keras, and TensorFlow) to help you gain an intuitive understanding of the concepts and tools for building intelligent systems. With this updated third edition, author Aurélien Géron explores a range of techniques, starting with simple linear regression and progressing to deep neural networks. Numerous code examples and exercises throughout the book help you apply what you've learned. Programming experience is all you need to get started. Use Scikit-learn to track an example ML project end to end Explore several models, including support vector machines, decision trees, random forests, and ensemble methods Exploit unsupervised learning techniques such as dimensionality reduction, clustering, and anomaly detection Dive into neural net architectures, including convolutional nets, recurrent nets, generative adversarial networks, autoencoders, diffusion models, and transformers Use TensorFlow and Keras to build and train neural nets for computer vision, natural language processing, generative models, and deep reinforcement learning