Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Differential Geometry Partial Differential Equations On Manifolds
Download Differential Geometry Partial Differential Equations On Manifolds full books in PDF, epub, and Kindle. Read online Differential Geometry Partial Differential Equations On Manifolds ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Differential Geometry: Partial Differential Equations on Manifolds by : Robert Everist Greene
Download or read book Differential Geometry: Partial Differential Equations on Manifolds written by Robert Everist Greene and published by American Mathematical Soc.. This book was released on 1993 with total page 585 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first of three parts comprising Volume 54, the proceedings of the Summer Research Institute on Differential Geometry, held at the University of California, Los Angeles, July 1990 (ISBN for the set is 0-8218-1493-1). Part 1 begins with a problem list by S.T. Yau, successor to his 1980 list ( Sem
Book Synopsis Partial Differential Equations on Manifolds by : Robert Everist Greene
Download or read book Partial Differential Equations on Manifolds written by Robert Everist Greene and published by . This book was released on 1993 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Differential Geometry and Analysis on CR Manifolds by : Sorin Dragomir
Download or read book Differential Geometry and Analysis on CR Manifolds written by Sorin Dragomir and published by Springer Science & Business Media. This book was released on 2007-06-10 with total page 499 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents many major differential geometric acheivements in the theory of CR manifolds for the first time in book form Explains how certain results from analysis are employed in CR geometry Many examples and explicitly worked-out proofs of main geometric results in the first section of the book making it suitable as a graduate main course or seminar textbook Provides unproved statements and comments inspiring further study
Book Synopsis Analysis and Partial Differential Equations on Manifolds, Fractals and Graphs by : Alexander Grigor'yan
Download or read book Analysis and Partial Differential Equations on Manifolds, Fractals and Graphs written by Alexander Grigor'yan and published by Walter de Gruyter GmbH & Co KG. This book was released on 2021-01-18 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book covers the latest research in the areas of mathematics that deal the properties of partial differential equations and stochastic processes on spaces in connection with the geometry of the underlying space. Written by experts in the field, this book is a valuable tool for the advanced mathematician.
Book Synopsis Geometric Mechanics on Riemannian Manifolds by : Ovidiu Calin
Download or read book Geometric Mechanics on Riemannian Manifolds written by Ovidiu Calin and published by Springer Science & Business Media. This book was released on 2006-03-15 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: * A geometric approach to problems in physics, many of which cannot be solved by any other methods * Text is enriched with good examples and exercises at the end of every chapter * Fine for a course or seminar directed at grad and adv. undergrad students interested in elliptic and hyperbolic differential equations, differential geometry, calculus of variations, quantum mechanics, and physics
Book Synopsis Nonlinear partial differential equations in differential geometry by : Robert Hardt
Download or read book Nonlinear partial differential equations in differential geometry written by Robert Hardt and published by American Mathematical Soc.. This book was released on 1996 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains lecture notes of minicourses at the Regional Geometry Institute at Park City, Utah, in July 1992. Presented here are surveys of breaking developments in a number of areas of nonlinear partial differential equations in differential geometry. The authors of the articles are not only excellent expositors, but are also leaders in this field of research. All of the articles provide in-depth treatment of the topics and require few prerequisites and less background than current research articles.
Book Synopsis A Course in Differential Geometry by : Thierry Aubin
Download or read book A Course in Differential Geometry written by Thierry Aubin and published by American Mathematical Soc.. This book was released on 2001 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook for second-year graduate students is intended as an introduction to differential geometry with principal emphasis on Riemannian geometry. Chapter I explains basic definitions and gives the proofs of the important theorems of Whitney and Sard. Chapter II deals with vector fields and differential forms. Chapter III addresses integration of vector fields and p-plane fields. Chapter IV develops the notion of connection on a Riemannian manifold considered as a means to define parallel transport on the manifold. The author also discusses related notions of torsion and curvature, and gives a working knowledge of the covariant derivative. Chapter V specializes on Riemannian manifolds by deducing global properties from local properties of curvature, the final goal being to determine the manifold completely. Chapter VI explores some problems in PDEs suggested by the geometry of manifolds. The author is well-known for his significant contributions to the field of geometry and PDEs - particularly for his work on the Yamabe problem - and for his expository accounts on the subject. The text contains many problems and solutions, permitting the reader to apply the theorems and to see concrete developments of the abstract theory.
Book Synopsis Differential Analysis on Complex Manifolds by : Raymond O. Wells
Download or read book Differential Analysis on Complex Manifolds written by Raymond O. Wells and published by Springer Science & Business Media. This book was released on 2007-10-31 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: A brand new appendix by Oscar Garcia-Prada graces this third edition of a classic work. In developing the tools necessary for the study of complex manifolds, this comprehensive, well-organized treatment presents in its opening chapters a detailed survey of recent progress in four areas: geometry (manifolds with vector bundles), algebraic topology, differential geometry, and partial differential equations. Wells’s superb analysis also gives details of the Hodge-Riemann bilinear relations on Kahler manifolds, Griffiths's period mapping, quadratic transformations, and Kodaira's vanishing and embedding theorems. Oscar Garcia-Prada’s appendix gives an overview of the developments in the field during the decades since the book appeared.
Book Synopsis Stochastic Equations and Differential Geometry by : Ya.I. Belopolskaya
Download or read book Stochastic Equations and Differential Geometry written by Ya.I. Belopolskaya and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'Et moi ..., si j'avait su comment en revenir, One service mathematics has rendered the je n'y serais point aile.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded n- sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ... '; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.
Book Synopsis Differential Equations on Manifolds and Mathematical Physics by : Vladimir M. Manuilov
Download or read book Differential Equations on Manifolds and Mathematical Physics written by Vladimir M. Manuilov and published by Birkhäuser. This book was released on 2022-01-22 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a volume originating from the Conference on Partial Differential Equations and Applications, which was held in Moscow in November 2018 in memory of professor Boris Sternin and attracted more than a hundred participants from eighteen countries. The conference was mainly dedicated to partial differential equations on manifolds and their applications in mathematical physics, geometry, topology, and complex analysis. The volume contains selected contributions by leading experts in these fields and presents the current state of the art in several areas of PDE. It will be of interest to researchers and graduate students specializing in partial differential equations, mathematical physics, topology, geometry, and their applications. The readers will benefit from the interplay between these various areas of mathematics.
Book Synopsis Geometry in Partial Differential Equations by : Agostino Prastaro
Download or read book Geometry in Partial Differential Equations written by Agostino Prastaro and published by World Scientific. This book was released on 1994 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book emphasizes the interdisciplinary interaction in problems involving geometry and partial differential equations. It provides an attempt to follow certain threads that interconnect various approaches in the geometric applications and influence of partial differential equations. A few such approaches include: Morse-Palais-Smale theory in global variational calculus, general methods to obtain conservation laws for PDEs, structural investigation for the understanding of the meaning of quantum geometry in PDEs, extensions to super PDEs (formulated in the category of supermanifolds) of the geometrical methods just introduced for PDEs and the harmonic theory which proved to be very important especially after the appearance of the Atiyah-Singer index theorem, which provides a link between geometry and topology.
Book Synopsis Differential Analysis on Complex Manifolds by : R. O. Wells
Download or read book Differential Analysis on Complex Manifolds written by R. O. Wells and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: In developing the tools necessary for the study of complex manifolds, this comprehensive, well-organized treatment presents in its opening chapters a detailed survey of recent progress in four areas: geometry (manifolds with vector bundles), algebraic topology, differential geometry, and partial differential equations. Subsequent chapters then develop such topics as Hermitian exterior algebra and the Hodge *-operator, harmonic theory on compact manifolds, differential operators on a Kahler manifold, the Hodge decomposition theorem on compact Kahler manifolds, the Hodge-Riemann bilinear relations on Kahler manifolds, Griffiths's period mapping, quadratic transformations, and Kodaira's vanishing and embedding theorems. The third edition of this standard reference contains a new appendix by Oscar Garcia-Prada which gives an overview of certain developments in the field during the decades since the book first appeared. From reviews of the 2nd Edition: "..the new edition of Professor Wells' book is timely and welcome...an excellent introduction for any mathematician who suspects that complex manifold techniques may be relevant to his work." - Nigel Hitchin, Bulletin of the London Mathematical Society "Its purpose is to present the basics of analysis and geometry on compact complex manifolds, and is already one of the standard sources for this material." - Daniel M. Burns, Jr., Mathematical Reviews
Book Synopsis Seminar on Differential Geometry by : Shing-Tung Yau
Download or read book Seminar on Differential Geometry written by Shing-Tung Yau and published by . This book was released on 1982 with total page 706 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of papers constitutes a wide-ranging survey of recent developments in differential geometry and its interactions with other fields, especially partial differential equations and mathematical physics. This area of mathematics was the subject of a special program at the Institute for Advanced Study in Princeton during the academic year 1979-1980; the papers in this volume were contributed by the speakers in the sequence of seminars organized by Shing-Tung Yau for this program. Both survey articles and articles presenting new results are included. The articles on differential geometry and partial differential equations include a general survey article by the editor on the relationship of the two fields and more specialized articles on topics including harmonic mappings, isoperimetric and Poincaré inequalities, metrics with specified curvature properties, the Monge-Arnpere equation, L2 harmonic forms and cohomology, manifolds of positive curvature, isometric embedding, and Kraumlhler manifolds and metrics. The articles on differential geometry and mathematical physics cover such topics as renormalization, instantons, gauge fields and the Yang-Mills equation, nonlinear evolution equations, incompleteness of space-times, black holes, and quantum gravity. A feature of special interest is the inclusion of a list of more than one hundred unsolved research problems compiled by the editor with comments and bibliographical information.
Book Synopsis The Ricci Flow: An Introduction by : Bennett Chow
Download or read book The Ricci Flow: An Introduction written by Bennett Chow and published by American Mathematical Soc.. This book was released on 2004 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Ricci flow is a powerful technique that integrates geometry, topology, and analysis. Intuitively, the idea is to set up a PDE that evolves a metric according to its Ricci curvature. The resulting equation has much in common with the heat equation, which tends to 'flow' a given function to ever nicer functions. By analogy, the Ricci flow evolves an initial metric into improved metrics. Richard Hamilton began the systematic use of the Ricci flow in the early 1980s and applied it in particular to study 3-manifolds. Grisha Perelman has made recent breakthroughs aimed at completing Hamilton's program. The Ricci flow method is now central to our understanding of the geometry and topology of manifolds.This book is an introduction to that program and to its connection to Thurston's geometrization conjecture. The authors also provide a 'Guide for the hurried reader', to help readers wishing to develop, as efficiently as possible, a nontechnical appreciation of the Ricci flow program for 3-manifolds, i.e., the so-called 'fast track'. The book is suitable for geometers and others who are interested in the use of geometric analysis to study the structure of manifolds. "The Ricci Flow" was nominated for the 2005 Robert W. Hamilton Book Award, which is the highest honor of literary achievement given to published authors at the University of Texas at Austin.
Book Synopsis Partial Differential Equations I by : Michael E. Taylor
Download or read book Partial Differential Equations I written by Michael E. Taylor and published by Springer Science & Business Media. This book was released on 2010-10-29 with total page 673 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first of three volumes on partial differential equations, this one introduces basic examples arising in continuum mechanics, electromagnetism, complex analysis and other areas, and develops a number of tools for their solution, in particular Fourier analysis, distribution theory, and Sobolev spaces. These tools are then applied to the treatment of basic problems in linear PDE, including the Laplace equation, heat equation, and wave equation, as well as more general elliptic, parabolic, and hyperbolic equations.The book is targeted at graduate students in mathematics and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis, and complex analysis.
Book Synopsis Differential Geometry of Manifolds by : Stephen Lovett
Download or read book Differential Geometry of Manifolds written by Stephen Lovett and published by CRC Press. This book was released on 2019-12-16 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential Geometry of Manifolds, Second Edition presents the extension of differential geometry from curves and surfaces to manifolds in general. The book provides a broad introduction to the field of differentiable and Riemannian manifolds, tying together classical and modern formulations. It introduces manifolds in a both streamlined and mathematically rigorous way while keeping a view toward applications, particularly in physics. The author takes a practical approach, containing extensive exercises and focusing on applications, including the Hamiltonian formulations of mechanics, electromagnetism, string theory. The Second Edition of this successful textbook offers several notable points of revision. New to the Second Edition: New problems have been added and the level of challenge has been changed to the exercises Each section corresponds to a 60-minute lecture period, making it more user-friendly for lecturers Includes new sections which provide more comprehensive coverage of topics Features a new chapter on Multilinear Algebra
Book Synopsis Fundamentals of Differential Geometry by : Serge Lang
Download or read book Fundamentals of Differential Geometry written by Serge Lang and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the basic concepts in differential topology, differential geometry, and differential equations, and some of the main basic theorems in all three areas. This new edition includes new chapters, sections, examples, and exercises. From the reviews: "There are many books on the fundamentals of differential geometry, but this one is quite exceptional; this is not surprising for those who know Serge Lang's books." --EMS NEWSLETTER