Differential Geometry and Its Applications

Download Differential Geometry and Its Applications PDF Online Free

Author :
Publisher : MAA
ISBN 13 : 9780883857489
Total Pages : 508 pages
Book Rating : 4.8/5 (574 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry and Its Applications by : John Oprea

Download or read book Differential Geometry and Its Applications written by John Oprea and published by MAA. This book was released on 2007-09-06 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies the differential geometry of surfaces and its relevance to engineering and the sciences.

Differential Geometry with Applications to Mechanics and Physics

Download Differential Geometry with Applications to Mechanics and Physics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9780824703851
Total Pages : 480 pages
Book Rating : 4.7/5 (38 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry with Applications to Mechanics and Physics by : Yves Talpaert

Download or read book Differential Geometry with Applications to Mechanics and Physics written by Yves Talpaert and published by CRC Press. This book was released on 2000-09-12 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to differential geometry with applications to mechanics and physics. It covers topology and differential calculus in banach spaces; differentiable manifold and mapping submanifolds; tangent vector space; tangent bundle, vector field on manifold, Lie algebra structure, and one-parameter group of diffeomorphisms; exterior differential forms; Lie derivative and Lie algebra; n-form integration on n-manifold; Riemann geometry; and more. It includes 133 solved exercises.

Geometry and Complexity Theory

Download Geometry and Complexity Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 110819141X
Total Pages : 353 pages
Book Rating : 4.1/5 (81 download)

DOWNLOAD NOW!


Book Synopsis Geometry and Complexity Theory by : J. M. Landsberg

Download or read book Geometry and Complexity Theory written by J. M. Landsberg and published by Cambridge University Press. This book was released on 2017-09-28 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two central problems in computer science are P vs NP and the complexity of matrix multiplication. The first is also a leading candidate for the greatest unsolved problem in mathematics. The second is of enormous practical and theoretical importance. Algebraic geometry and representation theory provide fertile ground for advancing work on these problems and others in complexity. This introduction to algebraic complexity theory for graduate students and researchers in computer science and mathematics features concrete examples that demonstrate the application of geometric techniques to real world problems. Written by a noted expert in the field, it offers numerous open questions to motivate future research. Complexity theory has rejuvenated classical geometric questions and brought different areas of mathematics together in new ways. This book will show the beautiful, interesting, and important questions that have arisen as a result.

An Introduction to Differential Geometry with Applications to Elasticity

Download An Introduction to Differential Geometry with Applications to Elasticity PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1402042485
Total Pages : 212 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Differential Geometry with Applications to Elasticity by : Philippe G. Ciarlet

Download or read book An Introduction to Differential Geometry with Applications to Elasticity written by Philippe G. Ciarlet and published by Springer Science & Business Media. This book was released on 2006-06-28 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: curvilinear coordinates. This treatment includes in particular a direct proof of the three-dimensional Korn inequality in curvilinear coordinates. The fourth and last chapter, which heavily relies on Chapter 2, begins by a detailed description of the nonlinear and linear equations proposed by W.T. Koiter for modeling thin elastic shells. These equations are “two-dimensional”, in the sense that they are expressed in terms of two curvilinear coordinates used for de?ning the middle surface of the shell. The existence, uniqueness, and regularity of solutions to the linear Koiter equations is then established, thanks this time to a fundamental “Korn inequality on a surface” and to an “in?nit- imal rigid displacement lemma on a surface”. This chapter also includes a brief introduction to other two-dimensional shell equations. Interestingly, notions that pertain to di?erential geometry per se,suchas covariant derivatives of tensor ?elds, are also introduced in Chapters 3 and 4, where they appear most naturally in the derivation of the basic boundary value problems of three-dimensional elasticity and shell theory. Occasionally, portions of the material covered here are adapted from - cerpts from my book “Mathematical Elasticity, Volume III: Theory of Shells”, published in 2000by North-Holland, Amsterdam; in this respect, I am indebted to Arjen Sevenster for his kind permission to rely on such excerpts. Oth- wise, the bulk of this work was substantially supported by two grants from the Research Grants Council of Hong Kong Special Administrative Region, China [Project No. 9040869, CityU 100803 and Project No. 9040966, CityU 100604].

Introduction to Differential Geometry with Applications to Navier-Stokes Dynamics

Download Introduction to Differential Geometry with Applications to Navier-Stokes Dynamics PDF Online Free

Author :
Publisher : iUniverse
ISBN 13 : 0595339212
Total Pages : 165 pages
Book Rating : 4.5/5 (953 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Differential Geometry with Applications to Navier-Stokes Dynamics by : Troy L Story

Download or read book Introduction to Differential Geometry with Applications to Navier-Stokes Dynamics written by Troy L Story and published by iUniverse. This book was released on 2005 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Differential Geometry with applications to Navier-Stokes Dynamics is an invaluable manuscript for anyone who wants to understand and use exterior calculus and differential geometry, the modern approach to calculus and geometry. Author Troy Story makes use of over thirty years of research experience to provide a smooth transition from conventional calculus to exterior calculus and differential geometry, assuming only a knowledge of conventional calculus. Introduction to Differential Geometry with applications to Navier-Stokes Dynamics includes the topics: Geometry, Exterior calculus, Homology and co-homology, Applications of differential geometry and exterior calculus to: Hamiltonian mechanics, geometric optics, irreversible thermodynamics, black hole dynamics, electromagnetism, classical string fields, and Navier-Stokes dynamics.

Applications of Differential Geometry to Econometrics

Download Applications of Differential Geometry to Econometrics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521651165
Total Pages : 342 pages
Book Rating : 4.6/5 (511 download)

DOWNLOAD NOW!


Book Synopsis Applications of Differential Geometry to Econometrics by : Paul Marriott

Download or read book Applications of Differential Geometry to Econometrics written by Paul Marriott and published by Cambridge University Press. This book was released on 2000-08-31 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originally published in 2000, this volume was an early example of the application of differential geometry to econometrics.

Introduction to Numerical Linear Algebra and Optimisation

Download Introduction to Numerical Linear Algebra and Optimisation PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521339841
Total Pages : 456 pages
Book Rating : 4.3/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Numerical Linear Algebra and Optimisation by : Philippe G. Ciarlet

Download or read book Introduction to Numerical Linear Algebra and Optimisation written by Philippe G. Ciarlet and published by Cambridge University Press. This book was released on 1989-08-25 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to give a thorough introduction to the most commonly used methods of numerical linear algebra and optimisation. The prerequisites are some familiarity with the basic properties of matrices, finite-dimensional vector spaces, advanced calculus, and some elementary notations from functional analysis. The book is in two parts. The first deals with numerical linear algebra (review of matrix theory, direct and iterative methods for solving linear systems, calculation of eigenvalues and eigenvectors) and the second, optimisation (general algorithms, linear and nonlinear programming). The author has based the book on courses taught for advanced undergraduate and beginning graduate students and the result is a well-organised and lucid exposition. Summaries of basic mathematics are provided, proofs of theorems are complete yet kept as simple as possible, and applications from physics and mechanics are discussed. Professor Ciarlet has also helpfully provided over 40 line diagrams, a great many applications, and a useful guide to further reading. This excellent textbook, which is translated and revised from the very successful French edition, will be of great value to students of numerical analysis, applied mathematics and engineering.

Differential Geometry, Calculus of Variations, and Their Applications

Download Differential Geometry, Calculus of Variations, and Their Applications PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9780824772673
Total Pages : 550 pages
Book Rating : 4.7/5 (726 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry, Calculus of Variations, and Their Applications by : George M. Rassias

Download or read book Differential Geometry, Calculus of Variations, and Their Applications written by George M. Rassias and published by CRC Press. This book was released on 1985-10-01 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a series of papers on some of the longstanding research problems of geometry, calculus of variations, and their applications. It is suitable for advanced graduate students, teachers, research mathematicians, and other professionals in mathematics.

Tensor and Vector Analysis

Download Tensor and Vector Analysis PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 048632091X
Total Pages : 258 pages
Book Rating : 4.4/5 (863 download)

DOWNLOAD NOW!


Book Synopsis Tensor and Vector Analysis by : C. E. Springer

Download or read book Tensor and Vector Analysis written by C. E. Springer and published by Courier Corporation. This book was released on 2013-09-26 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Assuming only a knowledge of basic calculus, this text's elementary development of tensor theory focuses on concepts related to vector analysis. The book also forms an introduction to metric differential geometry. 1962 edition.

Differential Topology and Geometry with Applications to Physics

Download Differential Topology and Geometry with Applications to Physics PDF Online Free

Author :
Publisher :
ISBN 13 : 9780750320726
Total Pages : 0 pages
Book Rating : 4.3/5 (27 download)

DOWNLOAD NOW!


Book Synopsis Differential Topology and Geometry with Applications to Physics by : Eduardo Nahmad-Achar

Download or read book Differential Topology and Geometry with Applications to Physics written by Eduardo Nahmad-Achar and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Differential geometry has encountered numerous applications in physics. More and more physical concepts can be understood as a direct consequence of geometric principles. The mathematical structure of Maxwell's electrodynamics, of the general theory of relativity, of string theory, and of gauge theories, to name but a few, are of a geometric nature. All of these disciplines require a curved space for the description of a system, and we require a mathematical formalism that can handle the dynamics in such spaces if we wish to go beyond a simple and superficial discussion of physical relationships. This formalism is precisely differential geometry. Even areas like thermodynamics and fluid mechanics greatly benefit from a differential geometric treatment. Not only in physics, but in important branches of mathematics has differential geometry effected important changes. Aimed at graduate students and requiring only linear algebra and differential and integral calculus, this book presents, in a concise and direct manner, the appropriate mathematical formalism and fundamentals of differential topology and differential geometry together with essential applications in many branches of physics." -- Prové de l'editor.

Differential Geometry and Statistics

Download Differential Geometry and Statistics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9780412398605
Total Pages : 292 pages
Book Rating : 4.3/5 (986 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry and Statistics by : M.K. Murray

Download or read book Differential Geometry and Statistics written by M.K. Murray and published by CRC Press. This book was released on 1993-04-01 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ever since the introduction by Rao in 1945 of the Fisher information metric on a family of probability distributions, there has been interest among statisticians in the application of differential geometry to statistics. This interest has increased rapidly in the last couple of decades with the work of a large number of researchers. Until now an impediment to the spread of these ideas into the wider community of statisticians has been the lack of a suitable text introducing the modern coordinate free approach to differential geometry in a manner accessible to statisticians. Differential Geometry and Statistics aims to fill this gap. The authors bring to this book extensive research experience in differential geometry and its application to statistics. The book commences with the study of the simplest differentiable manifolds - affine spaces and their relevance to exponential families, and goes on to the general theory, the Fisher information metric, the Amari connections and asymptotics. It culminates in the theory of vector bundles, principal bundles and jets and their applications to the theory of strings - a topic presently at the cutting edge of research in statistics and differential geometry.

An Introduction to Noncommutative Differential Geometry and Its Physical Applications

Download An Introduction to Noncommutative Differential Geometry and Its Physical Applications PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521659914
Total Pages : 381 pages
Book Rating : 4.5/5 (216 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Noncommutative Differential Geometry and Its Physical Applications by : J. Madore

Download or read book An Introduction to Noncommutative Differential Geometry and Its Physical Applications written by J. Madore and published by Cambridge University Press. This book was released on 1999-06-24 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thoroughly revised introduction to non-commutative geometry.

Information Geometry and Its Applications

Download Information Geometry and Its Applications PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 4431559787
Total Pages : 378 pages
Book Rating : 4.4/5 (315 download)

DOWNLOAD NOW!


Book Synopsis Information Geometry and Its Applications by : Shun-ichi Amari

Download or read book Information Geometry and Its Applications written by Shun-ichi Amari and published by Springer. This book was released on 2016-02-02 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first comprehensive book on information geometry, written by the founder of the field. It begins with an elementary introduction to dualistic geometry and proceeds to a wide range of applications, covering information science, engineering, and neuroscience. It consists of four parts, which on the whole can be read independently. A manifold with a divergence function is first introduced, leading directly to dualistic structure, the heart of information geometry. This part (Part I) can be apprehended without any knowledge of differential geometry. An intuitive explanation of modern differential geometry then follows in Part II, although the book is for the most part understandable without modern differential geometry. Information geometry of statistical inference, including time series analysis and semiparametric estimation (the Neyman–Scott problem), is demonstrated concisely in Part III. Applications addressed in Part IV include hot current topics in machine learning, signal processing, optimization, and neural networks. The book is interdisciplinary, connecting mathematics, information sciences, physics, and neurosciences, inviting readers to a new world of information and geometry. This book is highly recommended to graduate students and researchers who seek new mathematical methods and tools useful in their own fields.

Basic Elements of Differential Geometry and Topology

Download Basic Elements of Differential Geometry and Topology PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401578958
Total Pages : 500 pages
Book Rating : 4.4/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Basic Elements of Differential Geometry and Topology by : S.P. Novikov

Download or read book Basic Elements of Differential Geometry and Topology written by S.P. Novikov and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: One service mathematics has rendered the 'Et moi ..., si j'avait su comment en revenir, je n'y serais point aile.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded n- sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Matht"natics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics seNe as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series

Differential Geometry of Varieties with Degenerate Gauss Maps

Download Differential Geometry of Varieties with Degenerate Gauss Maps PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387215115
Total Pages : 272 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry of Varieties with Degenerate Gauss Maps by : Maks A. Akivis

Download or read book Differential Geometry of Varieties with Degenerate Gauss Maps written by Maks A. Akivis and published by Springer Science & Business Media. This book was released on 2006-04-18 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book surveys the differential geometry of varieties with degenerate Gauss maps, using moving frames and exterior differential forms as well as tensor methods. The authors illustrate the structure of varieties with degenerate Gauss maps, determine the singular points and singular varieties, find focal images and construct a classification of the varieties with degenerate Gauss maps.

Differential Forms and Applications

Download Differential Forms and Applications PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642579515
Total Pages : 124 pages
Book Rating : 4.6/5 (425 download)

DOWNLOAD NOW!


Book Synopsis Differential Forms and Applications by : Manfredo P. Do Carmo

Download or read book Differential Forms and Applications written by Manfredo P. Do Carmo and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: An application of differential forms for the study of some local and global aspects of the differential geometry of surfaces. Differential forms are introduced in a simple way that will make them attractive to "users" of mathematics. A brief and elementary introduction to differentiable manifolds is given so that the main theorem, namely Stokes' theorem, can be presented in its natural setting. The applications consist in developing the method of moving frames expounded by E. Cartan to study the local differential geometry of immersed surfaces in R3 as well as the intrinsic geometry of surfaces. This is then collated in the last chapter to present Chern's proof of the Gauss-Bonnet theorem for compact surfaces.

Differential Geometry of Curves and Surfaces

Download Differential Geometry of Curves and Surfaces PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319397990
Total Pages : 370 pages
Book Rating : 4.3/5 (193 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry of Curves and Surfaces by : Kristopher Tapp

Download or read book Differential Geometry of Curves and Surfaces written by Kristopher Tapp and published by Springer. This book was released on 2016-09-30 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a textbook on differential geometry well-suited to a variety of courses on this topic. For readers seeking an elementary text, the prerequisites are minimal and include plenty of examples and intermediate steps within proofs, while providing an invitation to more excursive applications and advanced topics. For readers bound for graduate school in math or physics, this is a clear, concise, rigorous development of the topic including the deep global theorems. For the benefit of all readers, the author employs various techniques to render the difficult abstract ideas herein more understandable and engaging. Over 300 color illustrations bring the mathematics to life, instantly clarifying concepts in ways that grayscale could not. Green-boxed definitions and purple-boxed theorems help to visually organize the mathematical content. Color is even used within the text to highlight logical relationships. Applications abound! The study of conformal and equiareal functions is grounded in its application to cartography. Evolutes, involutes and cycloids are introduced through Christiaan Huygens' fascinating story: in attempting to solve the famous longitude problem with a mathematically-improved pendulum clock, he invented mathematics that would later be applied to optics and gears. Clairaut’s Theorem is presented as a conservation law for angular momentum. Green’s Theorem makes possible a drafting tool called a planimeter. Foucault’s Pendulum helps one visualize a parallel vector field along a latitude of the earth. Even better, a south-pointing chariot helps one visualize a parallel vector field along any curve in any surface. In truth, the most profound application of differential geometry is to modern physics, which is beyond the scope of this book. The GPS in any car wouldn’t work without general relativity, formalized through the language of differential geometry. Throughout this book, applications, metaphors and visualizations are tools that motivate and clarify the rigorous mathematical content, but never replace it.