Manifolds, Sheaves, and Cohomology

Download Manifolds, Sheaves, and Cohomology PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3658106336
Total Pages : 366 pages
Book Rating : 4.6/5 (581 download)

DOWNLOAD NOW!


Book Synopsis Manifolds, Sheaves, and Cohomology by : Torsten Wedhorn

Download or read book Manifolds, Sheaves, and Cohomology written by Torsten Wedhorn and published by Springer. This book was released on 2016-07-25 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains techniques that are essential in almost all branches of modern geometry such as algebraic geometry, complex geometry, or non-archimedian geometry. It uses the most accessible case, real and complex manifolds, as a model. The author especially emphasizes the difference between local and global questions. Cohomology theory of sheaves is introduced and its usage is illustrated by many examples.

Natural Operations in Differential Geometry

Download Natural Operations in Differential Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662029502
Total Pages : 440 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Natural Operations in Differential Geometry by : Ivan Kolar

Download or read book Natural Operations in Differential Geometry written by Ivan Kolar and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this work is threefold: First it should be a monographical work on natural bundles and natural op erators in differential geometry. This is a field which every differential geometer has met several times, but which is not treated in detail in one place. Let us explain a little, what we mean by naturality. Exterior derivative commutes with the pullback of differential forms. In the background of this statement are the following general concepts. The vector bundle A kT* M is in fact the value of a functor, which associates a bundle over M to each manifold M and a vector bundle homomorphism over f to each local diffeomorphism f between manifolds of the same dimension. This is a simple example of the concept of a natural bundle. The fact that exterior derivative d transforms sections of A kT* M into sections of A k+1T* M for every manifold M can be expressed by saying that d is an operator from A kT* M into A k+1T* M.

A Comprehensive Course in Analysis

Download A Comprehensive Course in Analysis PDF Online Free

Author :
Publisher :
ISBN 13 : 9781470411039
Total Pages : 749 pages
Book Rating : 4.4/5 (11 download)

DOWNLOAD NOW!


Book Synopsis A Comprehensive Course in Analysis by : Barry Simon

Download or read book A Comprehensive Course in Analysis written by Barry Simon and published by . This book was released on 2015 with total page 749 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Comprehensive Course in Analysis by Poincar Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis

Tensor Analysis on Manifolds

Download Tensor Analysis on Manifolds PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486139239
Total Pages : 290 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis Tensor Analysis on Manifolds by : Richard L. Bishop

Download or read book Tensor Analysis on Manifolds written by Richard L. Bishop and published by Courier Corporation. This book was released on 2012-04-26 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: DIVProceeds from general to special, including chapters on vector analysis on manifolds and integration theory. /div

Tensor and Vector Analysis

Download Tensor and Vector Analysis PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 048632091X
Total Pages : 258 pages
Book Rating : 4.4/5 (863 download)

DOWNLOAD NOW!


Book Synopsis Tensor and Vector Analysis by : C. E. Springer

Download or read book Tensor and Vector Analysis written by C. E. Springer and published by Courier Corporation. This book was released on 2013-09-26 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Assuming only a knowledge of basic calculus, this text's elementary development of tensor theory focuses on concepts related to vector analysis. The book also forms an introduction to metric differential geometry. 1962 edition.

Manifolds and Differential Geometry

Download Manifolds and Differential Geometry PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821848151
Total Pages : 690 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Manifolds and Differential Geometry by : Jeffrey Marc Lee

Download or read book Manifolds and Differential Geometry written by Jeffrey Marc Lee and published by American Mathematical Soc.. This book was released on 2009 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential geometry began as the study of curves and surfaces using the methods of calculus. This book offers a graduate-level introduction to the tools and structures of modern differential geometry. It includes the topics usually found in a course on differentiable manifolds, such as vector bundles, tensors, and de Rham cohomology.

A New Approach to Differential Geometry using Clifford's Geometric Algebra

Download A New Approach to Differential Geometry using Clifford's Geometric Algebra PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 081768283X
Total Pages : 472 pages
Book Rating : 4.8/5 (176 download)

DOWNLOAD NOW!


Book Synopsis A New Approach to Differential Geometry using Clifford's Geometric Algebra by : John Snygg

Download or read book A New Approach to Differential Geometry using Clifford's Geometric Algebra written by John Snygg and published by Springer Science & Business Media. This book was released on 2011-12-09 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential geometry is the study of the curvature and calculus of curves and surfaces. A New Approach to Differential Geometry using Clifford's Geometric Algebra simplifies the discussion to an accessible level of differential geometry by introducing Clifford algebra. This presentation is relevant because Clifford algebra is an effective tool for dealing with the rotations intrinsic to the study of curved space. Complete with chapter-by-chapter exercises, an overview of general relativity, and brief biographies of historical figures, this comprehensive textbook presents a valuable introduction to differential geometry. It will serve as a useful resource for upper-level undergraduates, beginning-level graduate students, and researchers in the algebra and physics communities.

Differential Analysis on Complex Manifolds

Download Differential Analysis on Complex Manifolds PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387738916
Total Pages : 315 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Differential Analysis on Complex Manifolds by : Raymond O. Wells

Download or read book Differential Analysis on Complex Manifolds written by Raymond O. Wells and published by Springer Science & Business Media. This book was released on 2007-10-31 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: A brand new appendix by Oscar Garcia-Prada graces this third edition of a classic work. In developing the tools necessary for the study of complex manifolds, this comprehensive, well-organized treatment presents in its opening chapters a detailed survey of recent progress in four areas: geometry (manifolds with vector bundles), algebraic topology, differential geometry, and partial differential equations. Wells’s superb analysis also gives details of the Hodge-Riemann bilinear relations on Kahler manifolds, Griffiths's period mapping, quadratic transformations, and Kodaira's vanishing and embedding theorems. Oscar Garcia-Prada’s appendix gives an overview of the developments in the field during the decades since the book appeared.

Topics in Differential Geometry

Download Topics in Differential Geometry PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821820036
Total Pages : 510 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Topics in Differential Geometry by : Peter W. Michor

Download or read book Topics in Differential Geometry written by Peter W. Michor and published by American Mathematical Soc.. This book was released on 2008 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book treats the fundamentals of differential geometry: manifolds, flows, Lie groups and their actions, invariant theory, differential forms and de Rham cohomology, bundles and connections, Riemann manifolds, isometric actions, and symplectic and Poisson geometry. It gives the careful reader working knowledge in a wide range of topics of modern coordinate-free differential geometry in not too many pages. A prerequisite for using this book is a good knowledge of undergraduate analysis and linear algebra."--BOOK JACKET.

Analysis and Algebra on Differentiable Manifolds: A Workbook for Students and Teachers

Download Analysis and Algebra on Differentiable Manifolds: A Workbook for Students and Teachers PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9048135648
Total Pages : 446 pages
Book Rating : 4.0/5 (481 download)

DOWNLOAD NOW!


Book Synopsis Analysis and Algebra on Differentiable Manifolds: A Workbook for Students and Teachers by : P.M. Gadea

Download or read book Analysis and Algebra on Differentiable Manifolds: A Workbook for Students and Teachers written by P.M. Gadea and published by Springer Science & Business Media. This book was released on 2009-12-12 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: A famous Swiss professor gave a student’s course in Basel on Riemann surfaces. After a couple of lectures, a student asked him, “Professor, you have as yet not given an exact de nition of a Riemann surface.” The professor answered, “With Riemann surfaces, the main thing is to UNDERSTAND them, not to de ne them.” The student’s objection was reasonable. From a formal viewpoint, it is of course necessary to start as soon as possible with strict de nitions, but the professor’s - swer also has a substantial background. The pure de nition of a Riemann surface— as a complex 1-dimensional complex analytic manifold—contributes little to a true understanding. It takes a long time to really be familiar with what a Riemann s- face is. This example is typical for the objects of global analysis—manifolds with str- tures. There are complex concrete de nitions but these do not automatically explain what they really are, what we can do with them, which operations they really admit, how rigid they are. Hence, there arises the natural question—how to attain a deeper understanding? One well-known way to gain an understanding is through underpinning the d- nitions, theorems and constructions with hierarchies of examples, counterexamples and exercises. Their choice, construction and logical order is for any teacher in global analysis an interesting, important and fun creating task.

Differential Geometry

Download Differential Geometry PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319550845
Total Pages : 358 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry by : Loring W. Tu

Download or read book Differential Geometry written by Loring W. Tu and published by Springer. This book was released on 2017-06-01 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.

Modern Differential Geometry for Physicists

Download Modern Differential Geometry for Physicists PDF Online Free

Author :
Publisher : Allied Publishers
ISBN 13 : 9788177643169
Total Pages : 308 pages
Book Rating : 4.6/5 (431 download)

DOWNLOAD NOW!


Book Synopsis Modern Differential Geometry for Physicists by : Chris J. Isham

Download or read book Modern Differential Geometry for Physicists written by Chris J. Isham and published by Allied Publishers. This book was released on 2002 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Basic Concepts of Synthetic Differential Geometry

Download Basic Concepts of Synthetic Differential Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475745885
Total Pages : 331 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Basic Concepts of Synthetic Differential Geometry by : R. Lavendhomme

Download or read book Basic Concepts of Synthetic Differential Geometry written by R. Lavendhomme and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting at an introductory level, the book leads rapidly to important and often new results in synthetic differential geometry. From rudimentary analysis the book moves to such important results as: a new proof of De Rham's theorem; the synthetic view of global action, going as far as the Weil characteristic homomorphism; the systematic account of structured Lie objects, such as Riemannian, symplectic, or Poisson Lie objects; the view of global Lie algebras as Lie algebras of a Lie group in the synthetic sense; and lastly the synthetic construction of symplectic structure on the cotangent bundle in general. Thus while the book is limited to a naive point of view developing synthetic differential geometry as a theory in itself, the author nevertheless treats somewhat advanced topics, which are classic in classical differential geometry but new in the synthetic context. Audience: The book is suitable as an introduction to synthetic differential geometry for students as well as more qualified mathematicians.

Analysis On Manifolds

Download Analysis On Manifolds PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 042996269X
Total Pages : 381 pages
Book Rating : 4.4/5 (299 download)

DOWNLOAD NOW!


Book Synopsis Analysis On Manifolds by : James R. Munkres

Download or read book Analysis On Manifolds written by James R. Munkres and published by CRC Press. This book was released on 2018-02-19 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: A readable introduction to the subject of calculus on arbitrary surfaces or manifolds. Accessible to readers with knowledge of basic calculus and linear algebra. Sections include series of problems to reinforce concepts.

Metric Structures in Differential Geometry

Download Metric Structures in Differential Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387218262
Total Pages : 235 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Metric Structures in Differential Geometry by : Gerard Walschap

Download or read book Metric Structures in Differential Geometry written by Gerard Walschap and published by Springer Science & Business Media. This book was released on 2012-08-23 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an introduction to the theory of differentiable manifolds and fiber bundles. It examines bundles from the point of view of metric differential geometry: Euclidean bundles, Riemannian connections, curvature, and Chern-Weil theory are discussed, including the Pontrjagin, Euler, and Chern characteristic classes of a vector bundle. These concepts are illustrated in detail for bundles over spheres.

An Introduction to Manifolds

Download An Introduction to Manifolds PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441974008
Total Pages : 426 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Manifolds by : Loring W. Tu

Download or read book An Introduction to Manifolds written by Loring W. Tu and published by Springer Science & Business Media. This book was released on 2010-10-05 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.

Differential Geometry and Statistics

Download Differential Geometry and Statistics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9780412398605
Total Pages : 292 pages
Book Rating : 4.3/5 (986 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry and Statistics by : M.K. Murray

Download or read book Differential Geometry and Statistics written by M.K. Murray and published by CRC Press. This book was released on 1993-04-01 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ever since the introduction by Rao in 1945 of the Fisher information metric on a family of probability distributions, there has been interest among statisticians in the application of differential geometry to statistics. This interest has increased rapidly in the last couple of decades with the work of a large number of researchers. Until now an impediment to the spread of these ideas into the wider community of statisticians has been the lack of a suitable text introducing the modern coordinate free approach to differential geometry in a manner accessible to statisticians. Differential Geometry and Statistics aims to fill this gap. The authors bring to this book extensive research experience in differential geometry and its application to statistics. The book commences with the study of the simplest differentiable manifolds - affine spaces and their relevance to exponential families, and goes on to the general theory, the Fisher information metric, the Amari connections and asymptotics. It culminates in the theory of vector bundles, principal bundles and jets and their applications to the theory of strings - a topic presently at the cutting edge of research in statistics and differential geometry.