Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Difference Methods For Singular Perturbation Problems
Download Difference Methods For Singular Perturbation Problems full books in PDF, epub, and Kindle. Read online Difference Methods For Singular Perturbation Problems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Difference Methods for Singular Perturbation Problems by : Grigory I. Shishkin
Download or read book Difference Methods for Singular Perturbation Problems written by Grigory I. Shishkin and published by CRC Press. This book was released on 2008-09-22 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: Difference Methods for Singular Perturbation Problems focuses on the development of robust difference schemes for wide classes of boundary value problems. It justifies the ε-uniform convergence of these schemes and surveys the latest approaches important for further progress in numerical methods. The first part of the book e
Book Synopsis Fitted Numerical Methods For Singular Perturbation Problems: Error Estimates In The Maximum Norm For Linear Problems In One And Two Dimensions (Revised Edition) by : John J H Miller
Download or read book Fitted Numerical Methods For Singular Perturbation Problems: Error Estimates In The Maximum Norm For Linear Problems In One And Two Dimensions (Revised Edition) written by John J H Miller and published by World Scientific. This book was released on 2012-02-29 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the first edition of this book, the literature on fitted mesh methods for singularly perturbed problems has expanded significantly. Over the intervening years, fitted meshes have been shown to be effective for an extensive set of singularly perturbed partial differential equations. In the revised version of this book, the reader will find an introduction to the basic theory associated with fitted numerical methods for singularly perturbed differential equations. Fitted mesh methods focus on the appropriate distribution of the mesh points for singularly perturbed problems. The global errors in the numerical approximations are measured in the pointwise maximum norm. The fitted mesh algorithm is particularly simple to implement in practice, but the theory of why these numerical methods work is far from simple. This book can be used as an introductory text to the theory underpinning fitted mesh methods.
Book Synopsis Robust Numerical Methods for Singularly Perturbed Differential Equations by : Hans-Görg Roos
Download or read book Robust Numerical Methods for Singularly Perturbed Differential Equations written by Hans-Görg Roos and published by Springer Science & Business Media. This book was released on 2008-09-17 with total page 599 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition incorporates new developments in numerical methods for singularly perturbed differential equations, focusing on linear convection-diffusion equations and on nonlinear flow problems that appear in computational fluid dynamics.
Book Synopsis The Boundary Function Method for Singular Perturbed Problems by : Adelaida B. Vasil'eva
Download or read book The Boundary Function Method for Singular Perturbed Problems written by Adelaida B. Vasil'eva and published by SIAM. This book was released on 1995-01-01 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted solely to the boundary function method, which is one of the asymptotic methods.
Book Synopsis Multiple Scale and Singular Perturbation Methods by : J.K. Kevorkian
Download or read book Multiple Scale and Singular Perturbation Methods written by J.K. Kevorkian and published by Springer. This book was released on 1996-05-15 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a revised and updated version, including a substantial portion of new material, of our text Perturbation Methods in Applied Mathematics (Springer Verlag, 1981). We present the material at a level that assumes some familiarity with the basics of ordinary and partial differential equations. Some of the more advanced ideas are reviewed as needed; therefore this book can serve as a text in either an advanced undergraduate course or a graduate-level course on the subject. Perturbation methods, first used by astronomers to predict the effects of small disturbances on the nominal motions of celestial bodies, have now become widely used analytical tools in virtually all branches of science. A problem lends itself to perturbation analysis if it is "close" to a simpler problem that can be solved exactly. Typically, this closeness is measured by the occurrence of a small dimensionless parameter, E, in the governing system (consisting of differential equations and boundary conditions) so that for E = 0 the resulting system is exactly solvable. The main mathematical tool used is asymptotic expansion with respect to a suitable asymptotic sequence of functions of E. In a regular perturbation problem, a straightforward procedure leads to a system of differential equations and boundary conditions for each term in the asymptotic expansion. This system can be solved recursively, and the accuracy of the result improves as E gets smaller, for all values of the independent variables throughout the domain of interest. We discuss regular perturbation problems in the first chapter.
Book Synopsis Introduction to Singular Perturbations by : Robert E. Jr. O'Malley
Download or read book Introduction to Singular Perturbations written by Robert E. Jr. O'Malley and published by Elsevier. This book was released on 2012-12-02 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Singular Perturbations provides an overview of the fundamental techniques for obtaining asymptomatic solutions to boundary value problems. This text explores singular perturbation techniques, which are among the basic tools of several applied scientists. This book is organized into eight chapters, wherein Chapter 1 discusses the method of matched asymptomatic expansions, which has been frequently applied to several physical problems involving singular perturbations. Chapter 2 considers the nonlinear initial value problem to illustrate the regular perturbation method, and Chapter 3 explains how to construct asymptotic solutions for general linear equations. Chapter 4 discusses scalar equations and nonlinear system, whereas Chapters 5 and 6 explain the contrasts for initial value problems where the outer expansion cannot be determined without obtaining the initial values of the boundary layer correction. Chapters 7 and 8 deal with boundary value problem that arises in the study of adiabatic tubular chemical flow reactors with axial diffusion. This monograph is a valuable resource for applied mathematicians, engineers, researchers, students, and readers whose interests span a variety of fields.
Book Synopsis Singular Perturbation Methods in Control by : Petar Kokotovic
Download or read book Singular Perturbation Methods in Control written by Petar Kokotovic and published by SIAM. This book was released on 1999-01-01 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Singular perturbations and time-scale techniques were introduced to control engineering in the late 1960s and have since become common tools for the modeling, analysis, and design of control systems. In this SIAM Classics edition of the 1986 book, the original text is reprinted in its entirety (along with a new preface), providing once again the theoretical foundation for representative control applications. This book continues to be essential in many ways. It lays down the foundation of singular perturbation theory for linear and nonlinear systems, it presents the methodology in a pedagogical way that is not available anywhere else, and it illustrates the theory with many solved examples, including various physical examples and applications. So while new developments may go beyond the topics covered in this book, they are still based on the methodology described here, which continues to be their common starting point.
Book Synopsis New Difference Schemes for Partial Differential Equations by : Allaberen Ashyralyev
Download or read book New Difference Schemes for Partial Differential Equations written by Allaberen Ashyralyev and published by Birkhäuser. This book was released on 2012-12-06 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores new difference schemes for approximating the solutions of regular and singular perturbation boundary-value problems for PDEs. The construction is based on the exact difference scheme and Taylor's decomposition on the two or three points, which permits investigation of differential equations with variable coefficients and regular and singular perturbation boundary value problems.
Book Synopsis Singular Perturbation Theory by : R.S. Johnson
Download or read book Singular Perturbation Theory written by R.S. Johnson and published by Springer Science & Business Media. This book was released on 2005-12-28 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: The importance of mathematics in the study of problems arising from the real world, and the increasing success with which it has been used to model situations ranging from the purely deterministic to the stochastic, is well established. The purpose of the set of volumes to which the present one belongs is to make available authoritative, up to date, and self-contained accounts of some of the most important and useful of these analytical approaches and techniques. Each volume provides a detailed introduction to a specific subject area of current importance that is summarized below, and then goes beyond this by reviewing recent contributions, and so serving as a valuable reference source. The progress in applicable mathematics has been brought about by the extension and development of many important analytical approaches and techniques, in areas both old and new, frequently aided by the use of computers without which the solution of realistic problems would otherwise have been impossible.
Book Synopsis Differential Equations and Applications by : Valarmathi Sigamani
Download or read book Differential Equations and Applications written by Valarmathi Sigamani and published by Springer Nature. This book was released on 2022-01-24 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects select papers presented at the International Conference on Applications of Basic Sciences, held at Tiruchirappalli, Tamil Nadu, India, from 19-21 November 2019. The book discusses topics on singular perturbation problems, differential equations, numerical analysis, fuzzy logics, fuzzy differential equations, and mathematical physics, and their interdisciplinary applications in all areas of basic sciences: mathematics, physics, chemistry, and biology. It will be useful to researchers and scientists in all disciplines of basic sciences. This book will be very useful to know the different scientific approaches for a single physical system.
Book Synopsis Numerical Solution of Boundary Value Problems for Ordinary Differential Equations by : Uri M. Ascher
Download or read book Numerical Solution of Boundary Value Problems for Ordinary Differential Equations written by Uri M. Ascher and published by SIAM. This book was released on 1994-12-01 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner.
Book Synopsis Mathematical Models in Boundary Layer Theory by : O.A. Oleinik
Download or read book Mathematical Models in Boundary Layer Theory written by O.A. Oleinik and published by CRC Press. This book was released on 1999-05-25 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since Prandtl first suggested it in 1904, boundary layer theory has become a fundamental aspect of fluid dynamics. Although a vast literature exists for theoretical and experimental aspects of the theory, for the most part, mathematical studies can be found only in separate, scattered articles. Mathematical Models in Boundary Layer Theory offers the first systematic exposition of the mathematical methods and main results of the theory. Beginning with the basics, the authors detail the techniques and results that reveal the nature of the equations that govern the flow within boundary layers and ultimately describe the laws underlying the motion of fluids with small viscosity. They investigate the questions of existence and uniqueness of solutions, the stability of solutions with respect to perturbations, and the qualitative behavior of solutions and their asymptotics. Of particular importance for applications, they present methods for an approximate solution of the Prandtl system and a subsequent evaluation of the rate of convergence of the approximations to the exact solution. Written by the world's foremost experts on the subject, Mathematical Models in Boundary Layer Theory provides the opportunity to explore its mathematical studies and their importance to the nonlinear theory of viscous and electrically conducting flows, the theory of heat and mass transfer, and the dynamics of reactive and muliphase media. With the theory's importance to a wide variety of applications, applied mathematicians-especially those in fluid dynamics-along with engineers of aeronautical and ship design will undoubtedly welcome this authoritative, state-of-the-art treatise.
Book Synopsis Numerical Methods for Singularly Perturbed Differential Equations by : Hans-G. Roos
Download or read book Numerical Methods for Singularly Perturbed Differential Equations written by Hans-G. Roos and published by Springer Science & Business Media. This book was released on 1996-03-14 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: The analysis of singular perturbed differential equations began early in this century, when approximate solutions were constructed from asymptotic ex pansions. (Preliminary attempts appear in the nineteenth century [vD94].) This technique has flourished since the mid-1960s. Its principal ideas and methods are described in several textbooks. Nevertheless, asymptotic ex pansions may be impossible to construct or may fail to simplify the given problem; then numerical approximations are often the only option. The systematic study of numerical methods for singular perturbation problems started somewhat later - in the 1970s. While the research frontier has been steadily pushed back, the exposition of new developments in the analysis of numerical methods has been neglected. Perhaps the only example of a textbook that concentrates on this analysis is [DMS80], which collects various results for ordinary differential equations, but many methods and techniques that are relevant today (especially for partial differential equa tions) were developed after 1980.Thus contemporary researchers must comb the literature to acquaint themselves with earlier work. Our purposes in writing this introductory book are twofold. First, we aim to present a structured account of recent ideas in the numerical analysis of singularly perturbed differential equations. Second, this important area has many open problems and we hope that our book will stimulate further investigations.Our choice of topics is inevitably personal and reflects our own main interests.
Download or read book Perturbations written by James A. Murdock and published by SIAM. This book was released on 1999-01-01 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perturbations: Theory and Methods gives a thorough introduction to both regular and singular perturbation methods for algebraic and differential equations. Unlike most introductory books on the subject, this one distinguishes between formal and rigorous asymptotic validity, which are commonly confused in books that treat perturbation theory as a bag of heuristic tricks with no foundation. The meaning of "uniformity" is carefully explained in a variety of contexts. All standard methods, such as rescaling, multiple scales, averaging, matching, and the WKB method are covered, and the asymptotic validity (in the rigorous sense) of each method is carefully proved. First published in 1991, this book is still useful today because it is an introduction. It combines perturbation results with those known through other methods. Sometimes a geometrical result (such as the existence of a periodic solution) is rigorously deduced from a perturbation result, and at other times a knowledge of the geometry of the solutions is used to aid in the selection of an effective perturbation method. Dr. Murdock's approach differs from other introductory texts because he attempts to present perturbation theory as a natural part of a larger whole, the mathematical theory of differential equations. He explores the meaning of the results and their connections to other ways of studying the same problems.
Book Synopsis Perturbation Methods in Fluid Mechanics by : Milton Van Dyke
Download or read book Perturbation Methods in Fluid Mechanics written by Milton Van Dyke and published by Parabolic Press, Incorporated. This book was released on 1975 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Perturbation Methods in Applied Mathematics by : J. Kevorkian
Download or read book Perturbation Methods in Applied Mathematics written by J. Kevorkian and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 569 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a revised and updated version, including a substantial portion of new material, of J. D. Cole's text Perturbation Methods in Applied Mathe matics, Ginn-Blaisdell, 1968. We present the material at a level which assumes some familiarity with the basics of ordinary and partial differential equations. Some of the more advanced ideas are reviewed as needed; therefore this book can serve as a text in either an advanced undergraduate course or a graduate level course on the subject. The applied mathematician, attempting to understand or solve a physical problem, very often uses a perturbation procedure. In doing this, he usually draws on a backlog of experience gained from the solution of similar examples rather than on some general theory of perturbations. The aim of this book is to survey these perturbation methods, especially in connection with differ ential equations, in order to illustrate certain general features common to many examples. The basic ideas, however, are also applicable to integral equations, integrodifferential equations, and even to_difference equations. In essence, a perturbation procedure consists of constructing the solution for a problem involving a small parameter B, either in the differential equation or the boundary conditions or both, when the solution for the limiting case B = 0 is known. The main mathematical tool used is asymptotic expansion with respect to a suitable asymptotic sequence of functions of B.
Book Synopsis Numerical Solution of Differential Equations by : Zhilin Li
Download or read book Numerical Solution of Differential Equations written by Zhilin Li and published by Cambridge University Press. This book was released on 2017-11-30 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical and concise guide to finite difference and finite element methods. Well-tested MATLAB® codes are available online.