Dictionary Learning Algorithms and Applications

Download Dictionary Learning Algorithms and Applications PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319786741
Total Pages : 289 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Dictionary Learning Algorithms and Applications by : Bogdan Dumitrescu

Download or read book Dictionary Learning Algorithms and Applications written by Bogdan Dumitrescu and published by Springer. This book was released on 2018-04-16 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers all the relevant dictionary learning algorithms, presenting them in full detail and showing their distinct characteristics while also revealing the similarities. It gives implementation tricks that are often ignored but that are crucial for a successful program. Besides MOD, K-SVD, and other standard algorithms, it provides the significant dictionary learning problem variations, such as regularization, incoherence enforcing, finding an economical size, or learning adapted to specific problems like classification. Several types of dictionary structures are treated, including shift invariant; orthogonal blocks or factored dictionaries; and separable dictionaries for multidimensional signals. Nonlinear extensions such as kernel dictionary learning can also be found in the book. The discussion of all these dictionary types and algorithms is enriched with a thorough numerical comparison on several classic problems, thus showing the strengths and weaknesses of each algorithm. A few selected applications, related to classification, denoising and compression, complete the view on the capabilities of the presented dictionary learning algorithms. The book is accompanied by code for all algorithms and for reproducing most tables and figures. Presents all relevant dictionary learning algorithms - for the standard problem and its main variations - in detail and ready for implementation; Covers all dictionary structures that are meaningful in applications; Examines the numerical properties of the algorithms and shows how to choose the appropriate dictionary learning algorithm.

Sparse Modeling

Download Sparse Modeling PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439828695
Total Pages : 255 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Sparse Modeling by : Irina Rish

Download or read book Sparse Modeling written by Irina Rish and published by CRC Press. This book was released on 2014-12-01 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sparse models are particularly useful in scientific applications, such as biomarker discovery in genetic or neuroimaging data, where the interpretability of a predictive model is essential. Sparsity can also dramatically improve the cost efficiency of signal processing. Sparse Modeling: Theory, Algorithms, and Applications provides an introduction to the growing field of sparse modeling, including application examples, problem formulations that yield sparse solutions, algorithms for finding such solutions, and recent theoretical results on sparse recovery. The book gets you up to speed on the latest sparsity-related developments and will motivate you to continue learning about the field. The authors first present motivating examples and a high-level survey of key recent developments in sparse modeling. The book then describes optimization problems involving commonly used sparsity-enforcing tools, presents essential theoretical results, and discusses several state-of-the-art algorithms for finding sparse solutions. The authors go on to address a variety of sparse recovery problems that extend the basic formulation to more sophisticated forms of structured sparsity and to different loss functions. They also examine a particular class of sparse graphical models and cover dictionary learning and sparse matrix factorizations.

Machine Learning Algorithms

Download Machine Learning Algorithms PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1785884514
Total Pages : 352 pages
Book Rating : 4.7/5 (858 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Algorithms by : Giuseppe Bonaccorso

Download or read book Machine Learning Algorithms written by Giuseppe Bonaccorso and published by Packt Publishing Ltd. This book was released on 2017-07-24 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build strong foundation for entering the world of Machine Learning and data science with the help of this comprehensive guide About This Book Get started in the field of Machine Learning with the help of this solid, concept-rich, yet highly practical guide. Your one-stop solution for everything that matters in mastering the whats and whys of Machine Learning algorithms and their implementation. Get a solid foundation for your entry into Machine Learning by strengthening your roots (algorithms) with this comprehensive guide. Who This Book Is For This book is for IT professionals who want to enter the field of data science and are very new to Machine Learning. Familiarity with languages such as R and Python will be invaluable here. What You Will Learn Acquaint yourself with important elements of Machine Learning Understand the feature selection and feature engineering process Assess performance and error trade-offs for Linear Regression Build a data model and understand how it works by using different types of algorithm Learn to tune the parameters of Support Vector machines Implement clusters to a dataset Explore the concept of Natural Processing Language and Recommendation Systems Create a ML architecture from scratch. In Detail As the amount of data continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognition. This makes machine learning well-suited to the present-day era of Big Data and Data Science. The main challenge is how to transform data into actionable knowledge. In this book you will learn all the important Machine Learning algorithms that are commonly used in the field of data science. These algorithms can be used for supervised as well as unsupervised learning, reinforcement learning, and semi-supervised learning. A few famous algorithms that are covered in this book are Linear regression, Logistic Regression, SVM, Naive Bayes, K-Means, Random Forest, TensorFlow, and Feature engineering. In this book you will also learn how these algorithms work and their practical implementation to resolve your problems. This book will also introduce you to the Natural Processing Language and Recommendation systems, which help you run multiple algorithms simultaneously. On completion of the book you will have mastered selecting Machine Learning algorithms for clustering, classification, or regression based on for your problem. Style and approach An easy-to-follow, step-by-step guide that will help you get to grips with real -world applications of Algorithms for Machine Learning.

Sparse and Redundant Representations

Download Sparse and Redundant Representations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441970118
Total Pages : 376 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis Sparse and Redundant Representations by : Michael Elad

Download or read book Sparse and Redundant Representations written by Michael Elad and published by Springer Science & Business Media. This book was released on 2010-08-12 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: A long long time ago, echoing philosophical and aesthetic principles that existed since antiquity, William of Ockham enounced the principle of parsimony, better known today as Ockham’s razor: “Entities should not be multiplied without neces sity. ” This principle enabled scientists to select the ”best” physical laws and theories to explain the workings of the Universe and continued to guide scienti?c research, leadingtobeautifulresultsliketheminimaldescriptionlength approachtostatistical inference and the related Kolmogorov complexity approach to pattern recognition. However, notions of complexity and description length are subjective concepts anddependonthelanguage“spoken”whenpresentingideasandresults. The?eldof sparse representations, that recently underwent a Big Bang like expansion, explic itly deals with the Yin Yang interplay between the parsimony of descriptions and the “language” or “dictionary” used in them, and it became an extremely exciting area of investigation. It already yielded a rich crop of mathematically pleasing, deep and beautiful results that quickly translated into a wealth of practical engineering applications. You are holding in your hands the ?rst guide book to Sparseland, and I am sure you’ll ?nd in it both familiar and new landscapes to see and admire, as well as ex cellent pointers that will help you ?nd further valuable treasures. Enjoy the journey to Sparseland! Haifa, Israel, December 2009 Alfred M. Bruckstein vii Preface This book was originally written to serve as the material for an advanced one semester (fourteen 2 hour lectures) graduate course for engineering students at the Technion, Israel.

Algorithmic Aspects of Machine Learning

Download Algorithmic Aspects of Machine Learning PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107184584
Total Pages : 161 pages
Book Rating : 4.1/5 (71 download)

DOWNLOAD NOW!


Book Synopsis Algorithmic Aspects of Machine Learning by : Ankur Moitra

Download or read book Algorithmic Aspects of Machine Learning written by Ankur Moitra and published by Cambridge University Press. This book was released on 2018-09-27 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces cutting-edge research on machine learning theory and practice, providing an accessible, modern algorithmic toolkit.

Sparse Modeling for Image and Vision Processing

Download Sparse Modeling for Image and Vision Processing PDF Online Free

Author :
Publisher : Now Publishers
ISBN 13 : 9781680830088
Total Pages : 216 pages
Book Rating : 4.8/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Sparse Modeling for Image and Vision Processing by : Julien Mairal

Download or read book Sparse Modeling for Image and Vision Processing written by Julien Mairal and published by Now Publishers. This book was released on 2014-12-19 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sparse Modeling for Image and Vision Processing offers a self-contained view of sparse modeling for visual recognition and image processing. More specifically, it focuses on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.

Positive Trigonometric Polynomials and Signal Processing Applications

Download Positive Trigonometric Polynomials and Signal Processing Applications PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319536885
Total Pages : 282 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Positive Trigonometric Polynomials and Signal Processing Applications by : Bogdan Dumitrescu

Download or read book Positive Trigonometric Polynomials and Signal Processing Applications written by Bogdan Dumitrescu and published by Springer. This book was released on 2017-03-20 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers the main recent results on positive trigonometric polynomials within a unitary framework. The book has two parts: theory and applications. The theory of sum-of-squares trigonometric polynomials is presented unitarily based on the concept of Gram matrix (extended to Gram pair or Gram set). The applications part is organized as a collection of related problems that use systematically the theoretical results.

Computer Vision – ECCV 2012

Download Computer Vision – ECCV 2012 PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642337090
Total Pages : 909 pages
Book Rating : 4.6/5 (423 download)

DOWNLOAD NOW!


Book Synopsis Computer Vision – ECCV 2012 by : Andrew Fitzgibbon

Download or read book Computer Vision – ECCV 2012 written by Andrew Fitzgibbon and published by Springer. This book was released on 2012-09-26 with total page 909 pages. Available in PDF, EPUB and Kindle. Book excerpt: The seven-volume set comprising LNCS volumes 7572-7578 constitutes the refereed proceedings of the 12th European Conference on Computer Vision, ECCV 2012, held in Florence, Italy, in October 2012. The 408 revised papers presented were carefully reviewed and selected from 1437 submissions. The papers are organized in topical sections on geometry, 2D and 3D shapes, 3D reconstruction, visual recognition and classification, visual features and image matching, visual monitoring: action and activities, models, optimisation, learning, visual tracking and image registration, photometry: lighting and colour, and image segmentation.

Automatic Modulation Classification

Download Automatic Modulation Classification PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118906519
Total Pages : 204 pages
Book Rating : 4.1/5 (189 download)

DOWNLOAD NOW!


Book Synopsis Automatic Modulation Classification by : Zhechen Zhu

Download or read book Automatic Modulation Classification written by Zhechen Zhu and published by John Wiley & Sons. This book was released on 2014-12-15 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Automatic Modulation Classification (AMC) has been a key technology in many military, security, and civilian telecommunication applications for decades. In military and security applications, modulation often serves as another level of encryption; in modern civilian applications, multiple modulation types can be employed by a signal transmitter to control the data rate and link reliability. This book offers comprehensive documentation of AMC models, algorithms and implementations for successful modulation recognition. It provides an invaluable theoretical and numerical comparison of AMC algorithms, as well as guidance on state-of-the-art classification designs with specific military and civilian applications in mind. Key Features: Provides an important collection of AMC algorithms in five major categories, from likelihood-based classifiers and distribution-test-based classifiers to feature-based classifiers, machine learning assisted classifiers and blind modulation classifiers Lists detailed implementation for each algorithm based on a unified theoretical background and a comprehensive theoretical and numerical performance comparison Gives clear guidance for the design of specific automatic modulation classifiers for different practical applications in both civilian and military communication systems Includes a MATLAB toolbox on a companion website offering the implementation of a selection of methods discussed in the book

Machine Learning Algorithms for Problem Solving in Computational Applications: Intelligent Techniques

Download Machine Learning Algorithms for Problem Solving in Computational Applications: Intelligent Techniques PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1466618345
Total Pages : 464 pages
Book Rating : 4.4/5 (666 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Algorithms for Problem Solving in Computational Applications: Intelligent Techniques by : Kulkarni, Siddhivinayak

Download or read book Machine Learning Algorithms for Problem Solving in Computational Applications: Intelligent Techniques written by Kulkarni, Siddhivinayak and published by IGI Global. This book was released on 2012-06-30 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning is an emerging area of computer science that deals with the design and development of new algorithms based on various types of data. Machine Learning Algorithms for Problem Solving in Computational Applications: Intelligent Techniques addresses the complex realm of machine learning and its applications for solving various real-world problems in a variety of disciplines, such as manufacturing, business, information retrieval, and security. This premier reference source is essential for professors, researchers, and students in artificial intelligence as well as computer science and engineering.

Lifelong Machine Learning, Second Edition

Download Lifelong Machine Learning, Second Edition PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031015819
Total Pages : 187 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Lifelong Machine Learning, Second Edition by : Zhiyuan Sun

Download or read book Lifelong Machine Learning, Second Edition written by Zhiyuan Sun and published by Springer Nature. This book was released on 2022-06-01 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lifelong Machine Learning, Second Edition is an introduction to an advanced machine learning paradigm that continuously learns by accumulating past knowledge that it then uses in future learning and problem solving. In contrast, the current dominant machine learning paradigm learns in isolation: given a training dataset, it runs a machine learning algorithm on the dataset to produce a model that is then used in its intended application. It makes no attempt to retain the learned knowledge and use it in subsequent learning. Unlike this isolated system, humans learn effectively with only a few examples precisely because our learning is very knowledge-driven: the knowledge learned in the past helps us learn new things with little data or effort. Lifelong learning aims to emulate this capability, because without it, an AI system cannot be considered truly intelligent. Research in lifelong learning has developed significantly in the relatively short time since the first edition of this book was published. The purpose of this second edition is to expand the definition of lifelong learning, update the content of several chapters, and add a new chapter about continual learning in deep neural networks—which has been actively researched over the past two or three years. A few chapters have also been reorganized to make each of them more coherent for the reader. Moreover, the authors want to propose a unified framework for the research area. Currently, there are several research topics in machine learning that are closely related to lifelong learning—most notably, multi-task learning, transfer learning, and meta-learning—because they also employ the idea of knowledge sharing and transfer. This book brings all these topics under one roof and discusses their similarities and differences. Its goal is to introduce this emerging machine learning paradigm and present a comprehensive survey and review of the important research results and latest ideas in the area. This book is thus suitable for students, researchers, and practitioners who are interested in machine learning, data mining, natural language processing, or pattern recognition. Lecturers can readily use the book for courses in any of these related fields.

Proceedings of Second International Conference on Computing, Communications, and Cyber-Security

Download Proceedings of Second International Conference on Computing, Communications, and Cyber-Security PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811607338
Total Pages : 1027 pages
Book Rating : 4.8/5 (116 download)

DOWNLOAD NOW!


Book Synopsis Proceedings of Second International Conference on Computing, Communications, and Cyber-Security by : Pradeep Kumar Singh

Download or read book Proceedings of Second International Conference on Computing, Communications, and Cyber-Security written by Pradeep Kumar Singh and published by Springer Nature. This book was released on 2021-05-24 with total page 1027 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book features selected research papers presented at the Second International Conference on Computing, Communications, and Cyber-Security (IC4S 2020), organized in Krishna Engineering College (KEC), Ghaziabad, India, along with Academic Associates; Southern Federal University, Russia; IAC Educational, India; and ITS Mohan Nagar, Ghaziabad, India during 3–4 October 2020. It includes innovative work from researchers, leading innovators, and professionals in the area of communication and network technologies, advanced computing technologies, data analytics and intelligent learning, the latest electrical and electronics trends, and security and privacy issues.

Understanding Machine Learning

Download Understanding Machine Learning PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107057132
Total Pages : 415 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Understanding Machine Learning by : Shai Shalev-Shwartz

Download or read book Understanding Machine Learning written by Shai Shalev-Shwartz and published by Cambridge University Press. This book was released on 2014-05-19 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.

Deep Learning through Sparse and Low-Rank Modeling

Download Deep Learning through Sparse and Low-Rank Modeling PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128136596
Total Pages : 296 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning through Sparse and Low-Rank Modeling by : Zhangyang Wang

Download or read book Deep Learning through Sparse and Low-Rank Modeling written by Zhangyang Wang and published by Academic Press. This book was released on 2019-04-12 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models-those that emphasize problem-specific Interpretability-with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the toolkit of deep learning is closely tied with the sparse/low rank methods and algorithms, providing a rich variety of theoretical and analytic tools to guide the design and interpretation of deep learning models. The development of the theory and models is supported by a wide variety of applications in computer vision, machine learning, signal processing, and data mining. This book will be highly useful for researchers, graduate students and practitioners working in the fields of computer vision, machine learning, signal processing, optimization and statistics.

The Hundred-page Machine Learning Book

Download The Hundred-page Machine Learning Book PDF Online Free

Author :
Publisher :
ISBN 13 : 9781999579500
Total Pages : 141 pages
Book Rating : 4.5/5 (795 download)

DOWNLOAD NOW!


Book Synopsis The Hundred-page Machine Learning Book by : Andriy Burkov

Download or read book The Hundred-page Machine Learning Book written by Andriy Burkov and published by . This book was released on 2019 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a practical guide to get started and execute on machine learning within a few days without necessarily knowing much about machine learning.The first five chapters are enough to get you started and the next few chapters provide you a good feel of more advanced topics to pursue.

Intelligent Computing Theories and Application

Download Intelligent Computing Theories and Application PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319422944
Total Pages : 924 pages
Book Rating : 4.3/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Intelligent Computing Theories and Application by : De-Shuang Huang

Download or read book Intelligent Computing Theories and Application written by De-Shuang Huang and published by Springer. This book was released on 2016-07-11 with total page 924 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume set LNCS 9771 and LNCS 9772 constitutes - in conjunction with the volume LNAI 9773 - the refereed proceedings of the 12th International Conference on Intelligent Computing, ICIC 2016, held in Lanzhou, China, in August 2016. The 221 full papers and 15 short papers of the three proceedings volumes were carefully reviewed and selected from 639 submissions. The papers are organized in topical sections such as signal processing and image processing; information security, knowledge discovery, and data mining; systems biology and intelligent computing in computational biology; intelligent computing in scheduling; information security; advances in swarm intelligence: algorithms and applications; machine learning and data analysis for medical and engineering applications; evolutionary computation and learning; independent component analysis; compressed sensing, sparse coding; social computing; neural networks; nature inspired computing and optimization; genetic algorithms; signal processing; pattern recognition; biometrics recognition; image processing; information security; virtual reality and human-computer interaction; healthcare informatics theory and methods; artificial bee colony algorithms; differential evolution; memetic algorithms; swarm intelligence and optimization; soft computing; protein structure and function prediction; advances in swarm intelligence: algorithms and applications; optimization, neural network, and signal processing; biomedical informatics and image processing; machine learning; knowledge discovery and natural language processing; nature inspired computing and optimization; intelligent control and automation; intelligent data analysis and prediction; computer vision; knowledge representation and expert system; bioinformatics.

Learning Approaches in Signal Processing

Download Learning Approaches in Signal Processing PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429590326
Total Pages : 461 pages
Book Rating : 4.4/5 (295 download)

DOWNLOAD NOW!


Book Synopsis Learning Approaches in Signal Processing by : Francis Ring

Download or read book Learning Approaches in Signal Processing written by Francis Ring and published by CRC Press. This book was released on 2018-12-07 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: Coupled with machine learning, the use of signal processing techniques for big data analysis, Internet of things, smart cities, security, and bio-informatics applications has witnessed explosive growth. This has been made possible via fast algorithms on data, speech, image, and video processing with advanced GPU technology. This book presents an up-to-date tutorial and overview on learning technologies such as random forests, sparsity, and low-rank matrix estimation and cutting-edge visual/signal processing techniques, including face recognition, Kalman filtering, and multirate DSP. It discusses the applications that make use of deep learning, convolutional neural networks, random forests, etc. The applications include super-resolution imaging, fringe projection profilometry, human activities detection/capture, gesture recognition, spoken language processing, cooperative networks, bioinformatics, DNA, and healthcare.