Developments in Functional Equations and Related Topics

Download Developments in Functional Equations and Related Topics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 331961732X
Total Pages : 354 pages
Book Rating : 4.3/5 (196 download)

DOWNLOAD NOW!


Book Synopsis Developments in Functional Equations and Related Topics by : Janusz Brzdęk

Download or read book Developments in Functional Equations and Related Topics written by Janusz Brzdęk and published by Springer. This book was released on 2017-08-14 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents current research on Ulam stability for functional equations and inequalities. Contributions from renowned scientists emphasize fundamental and new results, methods and techniques. Detailed examples are given to theories to further understanding at the graduate level for students in mathematics, physics, and engineering. Key topics covered in this book include: Quasi means Approximate isometries Functional equations in hypergroups Stability of functional equations Fischer-Muszély equation Haar meager sets and Haar null sets Dynamical systems Functional equations in probability theory Stochastic convex ordering Dhombres functional equation Nonstandard analysis and Ulam stability This book is dedicated in memory of Staniłsaw Marcin Ulam, who posed the fundamental problem concerning approximate homomorphisms of groups in 1940; which has provided the stimulus for studies in the stability of functional equations and inequalities.

Functional Equations and How to Solve Them

Download Functional Equations and How to Solve Them PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387489010
Total Pages : 139 pages
Book Rating : 4.3/5 (874 download)

DOWNLOAD NOW!


Book Synopsis Functional Equations and How to Solve Them by : Christopher G. Small

Download or read book Functional Equations and How to Solve Them written by Christopher G. Small and published by Springer Science & Business Media. This book was released on 2007-04-03 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many books have been written on the theory of functional equations, but very few help readers solve functional equations in mathematics competitions and mathematical problem solving. This book fills that gap. Each chapter includes a list of problems associated with the covered material. These vary in difficulty, with the easiest being accessible to any high school student who has read the chapter carefully. The most difficult will challenge students studying for the International Mathematical Olympiad or the Putnam Competition. An appendix provides a springboard for further investigation of the concepts of limits, infinite series and continuity.

Handbook of Functional Equations

Download Handbook of Functional Equations PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 1493912860
Total Pages : 394 pages
Book Rating : 4.4/5 (939 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Functional Equations by : Themistocles M. Rassias

Download or read book Handbook of Functional Equations written by Themistocles M. Rassias and published by Springer. This book was released on 2014-11-21 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook consists of seventeen chapters written by eminent scientists from the international mathematical community, who present important research works in the field of mathematical analysis and related subjects, particularly in the Ulam stability theory of functional equations. The book provides an insight into a large domain of research with emphasis to the discussion of several theories, methods and problems in approximation theory, analytic inequalities, functional analysis, computational algebra and applications. The notion of stability of functional equations has its origins with S. M. Ulam, who posed the fundamental problem for approximate homomorphisms in 1940 and with D. H. Hyers, Th. M. Rassias, who provided the first significant solutions for additive and linear mappings in 1941 and 1978, respectively. During the last decade the notion of stability of functional equations has evolved into a very active domain of mathematical research with several applications of interdisciplinary nature. The chapters of this handbook focus mainly on both old and recent developments on the equation of homomorphism for square symmetric groupoids, the linear and polynomial functional equations in a single variable, the Drygas functional equation on amenable semigroups, monomial functional equation, the Cauchy–Jensen type mappings, differential equations and differential operators, operational equations and inclusions, generalized module left higher derivations, selections of set-valued mappings, D’Alembert’s functional equation, characterizations of information measures, functional equations in restricted domains, as well as generalized functional stability and fixed point theory.

Linear Functional Equations. Operator Approach

Download Linear Functional Equations. Operator Approach PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3034889771
Total Pages : 188 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Linear Functional Equations. Operator Approach by : Anatolij Antonevich

Download or read book Linear Functional Equations. Operator Approach written by Anatolij Antonevich and published by Birkhäuser. This book was released on 2012-12-06 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book we shall study linear functional equations of the form m bu(x) == Lak(X)U(Qk(X)) = f(x), (1) k=l where U is an unknown function from a given space F(X) of functions on a set X, Qk: X -+ X are given mappings, ak and f are given functions. Our approach is based on the investigation of the operators given by the left-hand side of equa tion (1). In what follows such operators will be called functional operators. We will pay special attention to the spectral properties of functional operators, first of all, to invertibility and the Noether property. Since the set X, the space F(X), the mappings Qk and the coefficients ak are arbitrary, the class of operators of the form (1) is very rich and some of its individ ual representatives are related with problems arising in various areas of mathemat ics and its applications. In addition to the classical theory of functional equations, among such areas one can indicate the theory of functional-differential equations with deviating argument, the theory of nonlocal problems for partial differential equations, the theory of boundary value problems for the equation of a vibrating string and equations of mixed type, a number of problems of the general theory of operator algebras and the theory of dynamical systems, the spectral theory of au tomorphisms of Banach algebras, and other problems.

Functional Differential Equations

Download Functional Differential Equations PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119189470
Total Pages : 362 pages
Book Rating : 4.1/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Functional Differential Equations by : Constantin Corduneanu

Download or read book Functional Differential Equations written by Constantin Corduneanu and published by John Wiley & Sons. This book was released on 2016-04-11 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Features new results and up-to-date advances in modeling and solving differential equations Introducing the various classes of functional differential equations, Functional Differential Equations: Advances and Applications presents the needed tools and topics to study the various classes of functional differential equations and is primarily concerned with the existence, uniqueness, and estimates of solutions to specific problems. The book focuses on the general theory of functional differential equations, provides the requisite mathematical background, and details the qualitative behavior of solutions to functional differential equations. The book addresses problems of stability, particularly for ordinary differential equations in which the theory can provide models for other classes of functional differential equations, and the stability of solutions is useful for the application of results within various fields of science, engineering, and economics. Functional Differential Equations: Advances and Applications also features: • Discussions on the classes of equations that cannot be solved to the highest order derivative, and in turn, addresses existence results and behavior types • Oscillatory motion and solutions that occur in many real-world phenomena as well as in man-made machines • Numerous examples and applications with a specific focus on ordinary differential equations and functional differential equations with finite delay • An appendix that introduces generalized Fourier series and Fourier analysis after periodicity and almost periodicity • An extensive Bibliography with over 550 references that connects the presented concepts to further topical exploration Functional Differential Equations: Advances and Applications is an ideal reference for academics and practitioners in applied mathematics, engineering, economics, and physics. The book is also an appropriate textbook for graduate- and PhD-level courses in applied mathematics, differential and difference equations, differential analysis, and dynamics processes. CONSTANTIN CORDUNEANU, PhD, is Emeritus Professor in the Department of Mathematics at The University of Texas at Arlington, USA. The author of six books and over 200 journal articles, he is currently Associate Editor for seven journals; a member of the American Mathematical Society, Society for Industrial and Applied Mathematics, and the Romanian Academy; and past president of the American Romanian Academy of Arts and Sciences. YIZENG LI, PhD, is Professor in the Department of Mathematics at Tarrant County College, USA. He is a member of the Society for Industrial and Applied Mathematics. MEHRAN MAHDAVI, PhD, is Professor in the Department of Mathematics at Bowie State University, USA. The author of numerous journal articles, he is a member of the American Mathematical Society, Society for Industrial and Applied Mathematics, and the Mathematical Association of America.

Iterative Functional Equations

Download Iterative Functional Equations PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521355612
Total Pages : 580 pages
Book Rating : 4.3/5 (556 download)

DOWNLOAD NOW!


Book Synopsis Iterative Functional Equations by : Marek Kuczma

Download or read book Iterative Functional Equations written by Marek Kuczma and published by Cambridge University Press. This book was released on 1990-07-27 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: A cohesive and comprehensive account of the modern theory of iterative functional equations. Many of the results included have appeared before only in research literature, making this an essential volume for all those working in functional equations and in such areas as dynamical systems and chaos, to which the theory is closely related. The authors introduce the reader to the theory and then explore the most recent developments and general results. Fundamental notions such as the existence and uniqueness of solutions to the equations are stressed throughout, as are applications of the theory to such areas as branching processes, differential equations, ergodic theory, functional analysis and geometry. Other topics covered include systems of linear and nonlinear equations of finite and infinite ORD various function classes, conjugate and commutable functions, linearization, iterative roots of functions, and special functional equations.

Topics in Functional Equations

Download Topics in Functional Equations PDF Online Free

Author :
Publisher :
ISBN 13 : 9780999342862
Total Pages : 552 pages
Book Rating : 4.3/5 (428 download)

DOWNLOAD NOW!


Book Synopsis Topics in Functional Equations by : Titu Andreescu

Download or read book Topics in Functional Equations written by Titu Andreescu and published by . This book was released on 2020-01-15 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Handbook of Functional Equations

Download Handbook of Functional Equations PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 1493912461
Total Pages : 555 pages
Book Rating : 4.4/5 (939 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Functional Equations by : Themistocles M. Rassias

Download or read book Handbook of Functional Equations written by Themistocles M. Rassias and published by Springer. This book was released on 2014-11-18 with total page 555 pages. Available in PDF, EPUB and Kindle. Book excerpt: As Richard Bellman has so elegantly stated at the Second International Conference on General Inequalities (Oberwolfach, 1978), “There are three reasons for the study of inequalities: practical, theoretical, and aesthetic.” On the aesthetic aspects, he said, “As has been pointed out, beauty is in the eye of the beholder. However, it is generally agreed that certain pieces of music, art, or mathematics are beautiful. There is an elegance to inequalities that makes them very attractive.” The content of the Handbook focuses mainly on both old and recent developments on approximate homomorphisms, on a relation between the Hardy–Hilbert and the Gabriel inequality, generalized Hardy–Hilbert type inequalities on multiple weighted Orlicz spaces, half-discrete Hilbert-type inequalities, on affine mappings, on contractive operators, on multiplicative Ostrowski and trapezoid inequalities, Ostrowski type inequalities for the Riemann–Stieltjes integral, means and related functional inequalities, Weighted Gini means, controlled additive relations, Szasz–Mirakyan operators, extremal problems in polynomials and entire functions, applications of functional equations to Dirichlet problem for doubly connected domains, nonlinear elliptic problems depending on parameters, on strongly convex functions, as well as applications to some new algorithms for solving general equilibrium problems, inequalities for the Fisher’s information measures, financial networks, mathematical models of mechanical fields in media with inclusions and holes.

Volterra Integral and Functional Equations

Download Volterra Integral and Functional Equations PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521372895
Total Pages : 727 pages
Book Rating : 4.5/5 (213 download)

DOWNLOAD NOW!


Book Synopsis Volterra Integral and Functional Equations by : G. Gripenberg

Download or read book Volterra Integral and Functional Equations written by G. Gripenberg and published by Cambridge University Press. This book was released on 1990 with total page 727 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book looks at the theories of Volterra integral and functional equations.

Introduction to Functional Equations

Download Introduction to Functional Equations PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439841160
Total Pages : 459 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Functional Equations by : Prasanna K. Sahoo

Download or read book Introduction to Functional Equations written by Prasanna K. Sahoo and published by CRC Press. This book was released on 2011-02-08 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Functional Equations grew out of a set of class notes from an introductory graduate level course at the University of Louisville. This introductory text communicates an elementary exposition of valued functional equations where the unknown functions take on real or complex values. In order to make the presentation as manageable as p

Descriptive Topology in Selected Topics of Functional Analysis

Download Descriptive Topology in Selected Topics of Functional Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461405297
Total Pages : 494 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Descriptive Topology in Selected Topics of Functional Analysis by : Jerzy Kąkol

Download or read book Descriptive Topology in Selected Topics of Functional Analysis written by Jerzy Kąkol and published by Springer Science & Business Media. This book was released on 2011-08-30 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Descriptive Topology in Selected Topics of Functional Analysis" is a collection of recent developments in the field of descriptive topology, specifically focused on the classes of infinite-dimensional topological vector spaces that appear in functional analysis. Such spaces include Fréchet spaces, (LF)-spaces and their duals, and the space of continuous real-valued functions C(X) on a completely regular Hausdorff space X, to name a few. These vector spaces appear in functional analysis in distribution theory, differential equations, complex analysis, and various other analytical settings. This monograph provides new insights into the connections between the topological properties of linear function spaces and their applications in functional analysis.

On Applications and Theory of Functional Equations

Download On Applications and Theory of Functional Equations PDF Online Free

Author :
Publisher : Springer
ISBN 13 :
Total Pages : 72 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis On Applications and Theory of Functional Equations by : J. Aczel

Download or read book On Applications and Theory of Functional Equations written by J. Aczel and published by Springer. This book was released on 1969 with total page 72 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Functional Equations in Several Variables

Download Functional Equations in Several Variables PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521352765
Total Pages : 490 pages
Book Rating : 4.3/5 (527 download)

DOWNLOAD NOW!


Book Synopsis Functional Equations in Several Variables by : J. Aczél

Download or read book Functional Equations in Several Variables written by J. Aczél and published by Cambridge University Press. This book was released on 1989 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: This treatise deals with modern theory of functional equations in several variables and their applications to mathematics, information theory, and the natural, behavioural and social sciences. The authors have chosen to emphasize applications, though not at the expense of theory, so they have kept the prerequisites to a minimum.

Functional Analysis, Sobolev Spaces and Partial Differential Equations

Download Functional Analysis, Sobolev Spaces and Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387709142
Total Pages : 600 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Functional Analysis, Sobolev Spaces and Partial Differential Equations by : Haim Brezis

Download or read book Functional Analysis, Sobolev Spaces and Partial Differential Equations written by Haim Brezis and published by Springer Science & Business Media. This book was released on 2010-11-02 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.

Functional Dynamic Equations on Time Scales

Download Functional Dynamic Equations on Time Scales PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030154203
Total Pages : 886 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Functional Dynamic Equations on Time Scales by : Svetlin G. Georgiev

Download or read book Functional Dynamic Equations on Time Scales written by Svetlin G. Georgiev and published by Springer. This book was released on 2019-05-03 with total page 886 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the qualitative theory of functional dynamic equations on time scales, providing an overview of recent developments in the field as well as a foundation to time scales, dynamic systems, and functional dynamic equations. It discusses functional dynamic equations in relation to mathematical physics applications and problems, providing useful tools for investigation for oscillations and nonoscillations of the solutions of functional dynamic equations on time scales. Practice problems are presented throughout the book for use as a graduate-level textbook and as a reference book for specialists of several disciplines, such as mathematics, physics, engineering, and biology.

Theory of Functional Differential Equations

Download Theory of Functional Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 146129892X
Total Pages : 374 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Theory of Functional Differential Equations by : Jack K. Hale

Download or read book Theory of Functional Differential Equations written by Jack K. Hale and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the publication of my lecture notes, Functional Differential Equations in the Applied Mathematical Sciences series, many new developments have occurred. As a consequence, it was decided not to make a few corrections and additions for a second edition of those notes, but to present a more compre hensive theory. The present work attempts to consolidate those elements of the theory which have stabilized and also to include recent directions of research. The following chapters were not discussed in my original notes. Chapter 1 is an elementary presentation of linear differential difference equations with constant coefficients of retarded and neutral type. Chapter 4 develops the recent theory of dissipative systems. Chapter 9 is a new chapter on perturbed systems. Chapter 11 is a new presentation incorporating recent results on the existence of periodic solutions of autonomous equations. Chapter 12 is devoted entirely to neutral equations. Chapter 13 gives an introduction to the global and generic theory. There is also an appendix on the location of the zeros of characteristic polynomials. The remainder of the material has been completely revised and updated with the most significant changes occurring in Chapter 3 on the properties of solutions, Chapter 5 on stability, and Chapter lOon behavior near a periodic orbit.

Special Functions and Analysis of Differential Equations

Download Special Functions and Analysis of Differential Equations PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000078582
Total Pages : 405 pages
Book Rating : 4.0/5 ( download)

DOWNLOAD NOW!


Book Synopsis Special Functions and Analysis of Differential Equations by : Praveen Agarwal

Download or read book Special Functions and Analysis of Differential Equations written by Praveen Agarwal and published by CRC Press. This book was released on 2020-09-08 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential Equations are very important tools in Mathematical Analysis. They are widely found in mathematics itself and in its applications to statistics, computing, electrical circuit analysis, dynamical systems, economics, biology, and so on. Recently there has been an increasing interest in and widely-extended use of differential equations and systems of fractional order (that is, of arbitrary order) as better models of phenomena in various physics, engineering, automatization, biology and biomedicine, chemistry, earth science, economics, nature, and so on. Now, new unified presentation and extensive development of special functions associated with fractional calculus are necessary tools, being related to the theory of differentiation and integration of arbitrary order (i.e., fractional calculus) and to the fractional order (or multi-order) differential and integral equations. This book provides learners with the opportunity to develop an understanding of advancements of special functions and the skills needed to apply advanced mathematical techniques to solve complex differential equations and Partial Differential Equations (PDEs). Subject matters should be strongly related to special functions involving mathematical analysis and its numerous applications. The main objective of this book is to highlight the importance of fundamental results and techniques of the theory of complex analysis for differential equations and PDEs and emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Specific topics include but are not limited to Partial differential equations Least squares on first-order system Sequence and series in functional analysis Special functions related to fractional (non-integer) order control systems and equations Various special functions related to generalized fractional calculus Operational method in fractional calculus Functional analysis and operator theory Mathematical physics Applications of numerical analysis and applied mathematics Computational mathematics Mathematical modeling This book provides the recent developments in special functions and differential equations and publishes high-quality, peer-reviewed book chapters in the area of nonlinear analysis, ordinary differential equations, partial differential equations, and related applications.