Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Deep Learning And Computational Physics
Download Deep Learning And Computational Physics full books in PDF, epub, and Kindle. Read online Deep Learning And Computational Physics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Deep Learning and Computational Physics by : Deep Ray
Download or read book Deep Learning and Computational Physics written by Deep Ray and published by Springer Nature. This book was released on with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Deep Learning in Computational Mechanics by : Stefan Kollmannsberger
Download or read book Deep Learning in Computational Mechanics written by Stefan Kollmannsberger and published by Springer Nature. This book was released on 2021-08-05 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a first course on deep learning in computational mechanics. The book starts with a short introduction to machine learning’s fundamental concepts before neural networks are explained thoroughly. It then provides an overview of current topics in physics and engineering, setting the stage for the book’s main topics: physics-informed neural networks and the deep energy method. The idea of the book is to provide the basic concepts in a mathematically sound manner and yet to stay as simple as possible. To achieve this goal, mostly one-dimensional examples are investigated, such as approximating functions by neural networks or the simulation of the temperature’s evolution in a one-dimensional bar. Each chapter contains examples and exercises which are either solved analytically or in PyTorch, an open-source machine learning framework for python.
Book Synopsis Deep Learning For Physics Research by : Martin Erdmann
Download or read book Deep Learning For Physics Research written by Martin Erdmann and published by World Scientific. This book was released on 2021-06-25 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: A core principle of physics is knowledge gained from data. Thus, deep learning has instantly entered physics and may become a new paradigm in basic and applied research.This textbook addresses physics students and physicists who want to understand what deep learning actually means, and what is the potential for their own scientific projects. Being familiar with linear algebra and parameter optimization is sufficient to jump-start deep learning. Adopting a pragmatic approach, basic and advanced applications in physics research are described. Also offered are simple hands-on exercises for implementing deep networks for which python code and training data can be downloaded.
Book Synopsis Deep Learning and Physics by : Akinori Tanaka
Download or read book Deep Learning and Physics written by Akinori Tanaka and published by Springer Nature. This book was released on 2021-03-24 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: What is deep learning for those who study physics? Is it completely different from physics? Or is it similar? In recent years, machine learning, including deep learning, has begun to be used in various physics studies. Why is that? Is knowing physics useful in machine learning? Conversely, is knowing machine learning useful in physics? This book is devoted to answers of these questions. Starting with basic ideas of physics, neural networks are derived naturally. And you can learn the concepts of deep learning through the words of physics. In fact, the foundation of machine learning can be attributed to physical concepts. Hamiltonians that determine physical systems characterize various machine learning structures. Statistical physics given by Hamiltonians defines machine learning by neural networks. Furthermore, solving inverse problems in physics through machine learning and generalization essentially provides progress and even revolutions in physics. For these reasons, in recent years interdisciplinary research in machine learning and physics has been expanding dramatically. This book is written for anyone who wants to learn, understand, and apply the relationship between deep learning/machine learning and physics. All that is needed to read this book are the basic concepts in physics: energy and Hamiltonians. The concepts of statistical mechanics and the bracket notation of quantum mechanics, which are explained in columns, are used to explain deep learning frameworks. We encourage you to explore this new active field of machine learning and physics, with this book as a map of the continent to be explored.
Book Synopsis An Introduction to Computational Physics by : Tao Pang
Download or read book An Introduction to Computational Physics written by Tao Pang and published by Cambridge University Press. This book was released on 2006-01-19 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: This advanced textbook provides an introduction to the basic methods of computational physics.
Book Synopsis The Principles of Deep Learning Theory by : Daniel A. Roberts
Download or read book The Principles of Deep Learning Theory written by Daniel A. Roberts and published by Cambridge University Press. This book was released on 2022-05-26 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume develops an effective theory approach to understanding deep neural networks of practical relevance.
Book Synopsis Effective Computation in Physics by : Anthony Scopatz
Download or read book Effective Computation in Physics written by Anthony Scopatz and published by "O'Reilly Media, Inc.". This book was released on 2015-06-25 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: More physicists today are taking on the role of software developer as part of their research, but software development isnâ??t always easy or obvious, even for physicists. This practical book teaches essential software development skills to help you automate and accomplish nearly any aspect of research in a physics-based field. Written by two PhDs in nuclear engineering, this book includes practical examples drawn from a working knowledge of physics concepts. Youâ??ll learn how to use the Python programming language to perform everything from collecting and analyzing data to building software and publishing your results. In four parts, this book includes: Getting Started: Jump into Python, the command line, data containers, functions, flow control and logic, and classes and objects Getting It Done: Learn about regular expressions, analysis and visualization, NumPy, storing data in files and HDF5, important data structures in physics, computing in parallel, and deploying software Getting It Right: Build pipelines and software, learn to use local and remote version control, and debug and test your code Getting It Out There: Document your code, process and publish your findings, and collaborate efficiently; dive into software licenses, ownership, and copyright procedures
Book Synopsis Computational Mechanics with Neural Networks by : Genki Yagawa
Download or read book Computational Mechanics with Neural Networks written by Genki Yagawa and published by Springer Nature. This book was released on 2021-02-26 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book shows how neural networks are applied to computational mechanics. Part I presents the fundamentals of neural networks and other machine learning method in computational mechanics. Part II highlights the applications of neural networks to a variety of problems of computational mechanics. The final chapter gives perspectives to the applications of the deep learning to computational mechanics.
Book Synopsis Theory, Numerics and Applications of Hyperbolic Problems II by : Christian Klingenberg
Download or read book Theory, Numerics and Applications of Hyperbolic Problems II written by Christian Klingenberg and published by Springer. This book was released on 2018-06-27 with total page 698 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second of two volumes, this edited proceedings book features research presented at the XVI International Conference on Hyperbolic Problems held in Aachen, Germany in summer 2016. It focuses on the theoretical, applied, and computational aspects of hyperbolic partial differential equations (systems of hyperbolic conservation laws, wave equations, etc.) and of related mathematical models (PDEs of mixed type, kinetic equations, nonlocal or/and discrete models) found in the field of applied sciences.
Book Synopsis Machine Learning Meets Quantum Physics by : Kristof T. Schütt
Download or read book Machine Learning Meets Quantum Physics written by Kristof T. Schütt and published by Springer Nature. This book was released on 2020-06-03 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designing molecules and materials with desired properties is an important prerequisite for advancing technology in our modern societies. This requires both the ability to calculate accurate microscopic properties, such as energies, forces and electrostatic multipoles of specific configurations, as well as efficient sampling of potential energy surfaces to obtain corresponding macroscopic properties. Tools that can provide this are accurate first-principles calculations rooted in quantum mechanics, and statistical mechanics, respectively. Unfortunately, they come at a high computational cost that prohibits calculations for large systems and long time-scales, thus presenting a severe bottleneck both for searching the vast chemical compound space and the stupendously many dynamical configurations that a molecule can assume. To overcome this challenge, recently there have been increased efforts to accelerate quantum simulations with machine learning (ML). This emerging interdisciplinary community encompasses chemists, material scientists, physicists, mathematicians and computer scientists, joining forces to contribute to the exciting hot topic of progressing machine learning and AI for molecules and materials. The book that has emerged from a series of workshops provides a snapshot of this rapidly developing field. It contains tutorial material explaining the relevant foundations needed in chemistry, physics as well as machine learning to give an easy starting point for interested readers. In addition, a number of research papers defining the current state-of-the-art are included. The book has five parts (Fundamentals, Incorporating Prior Knowledge, Deep Learning of Atomistic Representations, Atomistic Simulations and Discovery and Design), each prefaced by editorial commentary that puts the respective parts into a broader scientific context.
Book Synopsis Data-Driven Science and Engineering by : Steven L. Brunton
Download or read book Data-Driven Science and Engineering written by Steven L. Brunton and published by Cambridge University Press. This book was released on 2022-05-05 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Book Synopsis Deep Learning in Science by : Pierre Baldi
Download or read book Deep Learning in Science written by Pierre Baldi and published by Cambridge University Press. This book was released on 2021-07 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rigorous treatment of the theory of deep learning from first principles, with applications to beautiful problems in the natural sciences.
Book Synopsis Computational Physics by : Rubin H. Landau
Download or read book Computational Physics written by Rubin H. Landau and published by John Wiley & Sons. This book was released on 2015-09-08 with total page 647 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of computation and simulation has become an essential part of the scientific process. Being able to transform a theory into an algorithm requires significant theoretical insight, detailed physical and mathematical understanding, and a working level of competency in programming. This upper-division text provides an unusually broad survey of the topics of modern computational physics from a multidisciplinary, computational science point of view. Its philosophy is rooted in learning by doing (assisted by many model programs), with new scientific materials as well as with the Python programming language. Python has become very popular, particularly for physics education and large scientific projects. It is probably the easiest programming language to learn for beginners, yet is also used for mainstream scientific computing, and has packages for excellent graphics and even symbolic manipulations. The text is designed for an upper-level undergraduate or beginning graduate course and provides the reader with the essential knowledge to understand computational tools and mathematical methods well enough to be successful. As part of the teaching of using computers to solve scientific problems, the reader is encouraged to work through a sample problem stated at the beginning of each chapter or unit, which involves studying the text, writing, debugging and running programs, visualizing the results, and the expressing in words what has been done and what can be concluded. Then there are exercises and problems at the end of each chapter for the reader to work on their own (with model programs given for that purpose).
Book Synopsis Gaussian Processes for Machine Learning by : Carl Edward Rasmussen
Download or read book Gaussian Processes for Machine Learning written by Carl Edward Rasmussen and published by MIT Press. This book was released on 2005-11-23 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.
Book Synopsis Deep Learning-Based Forward Modeling and Inversion Techniques for Computational Physics Problems by : Yinpeng Wang
Download or read book Deep Learning-Based Forward Modeling and Inversion Techniques for Computational Physics Problems written by Yinpeng Wang and published by CRC Press. This book was released on 2023-07-06 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book investigates in detail the emerging deep learning (DL) technique in computational physics, assessing its promising potential to substitute conventional numerical solvers for calculating the fields in real-time. After good training, the proposed architecture can resolve both the forward computing and the inverse retrieve problems. Pursuing a holistic perspective, the book includes the following areas. The first chapter discusses the basic DL frameworks. Then, the steady heat conduction problem is solved by the classical U-net in Chapter 2, involving both the passive and active cases. Afterwards, the sophisticated heat flux on a curved surface is reconstructed by the presented Conv-LSTM, exhibiting high accuracy and efficiency. Additionally, a physics-informed DL structure along with a nonlinear mapping module are employed to obtain the space/temperature/time-related thermal conductivity via the transient temperature in Chapter 4. Finally, in Chapter 5, a series of the latest advanced frameworks and the corresponding physics applications are introduced. As deep learning techniques are experiencing vigorous development in computational physics, more people desire related reading materials. This book is intended for graduate students, professional practitioners, and researchers who are interested in DL for computational physics.
Book Synopsis Deep Learning and Computational Physics by : Deep Ray
Download or read book Deep Learning and Computational Physics written by Deep Ray and published by Springer. This book was released on 2024-07-01 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main objective of this book is to introduce a student who is familiar with elementary math concepts to select topics in deep learning. It exploits strong connections between deep learning algorithms and the techniques of computational physics to achieve two important goals. First, it uses concepts from computational physics to develop an understanding of deep learning algorithms. Second, it describes several novel deep learning algorithms for solving challenging problems in computational physics, thereby offering someone who is interested in modeling physical phenomena with a complementary set of tools. It is intended for senior undergraduate and graduate students in science and engineering programs. It is used as a textbook for a course (or a course sequence) for senior-level undergraduate or graduate-level students.
Book Synopsis A First Course in the Numerical Analysis of Differential Equations by : A. Iserles
Download or read book A First Course in the Numerical Analysis of Differential Equations written by A. Iserles and published by Cambridge University Press. This book was released on 2009 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: lead the reader to a theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations." --Book Jacket.