Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Decomposability Of Tensors
Download Decomposability Of Tensors full books in PDF, epub, and Kindle. Read online Decomposability Of Tensors ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Decomposability of Tensors by : Luca Chiantini
Download or read book Decomposability of Tensors written by Luca Chiantini and published by MDPI. This book was released on 2019-02-15 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "Decomposability of Tensors" that was published in Mathematics
Book Synopsis Tensors: Geometry and Applications by : J. M. Landsberg
Download or read book Tensors: Geometry and Applications written by J. M. Landsberg and published by American Mathematical Soc.. This book was released on 2011-12-14 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensors are ubiquitous in the sciences. The geometry of tensors is both a powerful tool for extracting information from data sets, and a beautiful subject in its own right. This book has three intended uses: a classroom textbook, a reference work for researchers in the sciences, and an account of classical and modern results in (aspects of) the theory that will be of interest to researchers in geometry. For classroom use, there is a modern introduction to multilinear algebra and to the geometry and representation theory needed to study tensors, including a large number of exercises. For researchers in the sciences, there is information on tensors in table format for easy reference and a summary of the state of the art in elementary language. This is the first book containing many classical results regarding tensors. Particular applications treated in the book include the complexity of matrix multiplication, P versus NP, signal processing, phylogenetics, and algebraic statistics. For geometers, there is material on secant varieties, G-varieties, spaces with finitely many orbits and how these objects arise in applications, discussions of numerous open questions in geometry arising in applications, and expositions of advanced topics such as the proof of the Alexander-Hirschowitz theorem and of the Weyman-Kempf method for computing syzygies.
Book Synopsis What Are Tensors Exactly? by : Hongyu Guo
Download or read book What Are Tensors Exactly? written by Hongyu Guo and published by World Scientific. This book was released on 2021-06-16 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensors have numerous applications in physics and engineering. There is often a fuzzy haze surrounding the concept of tensor that puzzles many students. The old-fashioned definition is difficult to understand because it is not rigorous; the modern definitions are difficult to understand because they are rigorous but at a cost of being more abstract and less intuitive.The goal of this book is to elucidate the concepts in an intuitive way but without loss of rigor, to help students gain deeper understanding. As a result, they will not need to recite those definitions in a parrot-like manner any more. This volume answers common questions and corrects many misconceptions about tensors. A large number of illuminating illustrations helps the reader to understand the concepts more easily.This unique reference text will benefit researchers, professionals, academics, graduate students and undergraduate students.
Book Synopsis Tensor Categories by : Pavel Etingof
Download or read book Tensor Categories written by Pavel Etingof and published by American Mathematical Soc.. This book was released on 2016-08-05 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Is there a vector space whose dimension is the golden ratio? Of course not—the golden ratio is not an integer! But this can happen for generalizations of vector spaces—objects of a tensor category. The theory of tensor categories is a relatively new field of mathematics that generalizes the theory of group representations. It has deep connections with many other fields, including representation theory, Hopf algebras, operator algebras, low-dimensional topology (in particular, knot theory), homotopy theory, quantum mechanics and field theory, quantum computation, theory of motives, etc. This book gives a systematic introduction to this theory and a review of its applications. While giving a detailed overview of general tensor categories, it focuses especially on the theory of finite tensor categories and fusion categories (in particular, braided and modular ones), and discusses the main results about them with proofs. In particular, it shows how the main properties of finite-dimensional Hopf algebras may be derived from the theory of tensor categories. Many important results are presented as a sequence of exercises, which makes the book valuable for students and suitable for graduate courses. Many applications, connections to other areas, additional results, and references are discussed at the end of each chapter.
Author :Victor Guillemin Publisher :World Scientific Publishing Company ISBN 13 :9789811213779 Total Pages :272 pages Book Rating :4.2/5 (137 download)
Book Synopsis Differential Forms by : Victor Guillemin
Download or read book Differential Forms written by Victor Guillemin and published by World Scientific Publishing Company. This book was released on 2019-09-13 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: There already exist a number of excellent graduate textbooks on the theory of differential forms as well as a handful of very good undergraduate textbooks on multivariable calculus in which this subject is briefly touched upon but not elaborated on enough. The goal of this textbook is to be readable and usable for undergraduates. It is entirely devoted to the subject of differential forms and explores a lot of its important ramifications. In particular, our book provides a detailed and lucid account of a fundamental result in the theory of differential forms which is, as a rule, not touched upon in undergraduate texts: the isomorphism between the Čech cohomology groups of a differential manifold and its de Rham cohomology groups. Authoritative textbook on differential forms for undergraduates Includes numerous Examples and Exercises for further in-depth understanding on the presented concepts The first author, Victor Guillemin, is a world-renowned mathematician in the field of symplectic geometry His co-author, Peter Haine, is a talented doctoral student at MIT under Clark Barwick. His research interests center around homotopy theory, algebraic K-theory and algebraic geometry
Book Synopsis Tensor Methods in Statistics by : Peter McCullagh
Download or read book Tensor Methods in Statistics written by Peter McCullagh and published by Courier Dover Publications. This book was released on 2018-07-18 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: A pioneering monograph on tensor methods applied to distributional problems arising in statistics, this work begins with the study of multivariate moments and cumulants. An invaluable reference for graduate students and professional statisticians. 1987 edition.
Book Synopsis An Introduction to Tensors and Group Theory for Physicists by : Nadir Jeevanjee
Download or read book An Introduction to Tensors and Group Theory for Physicists written by Nadir Jeevanjee and published by Birkhäuser. This book was released on 2015-03-11 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of this highly praised textbook provides an introduction to tensors, group theory, and their applications in classical and quantum physics. Both intuitive and rigorous, it aims to demystify tensors by giving the slightly more abstract but conceptually much clearer definition found in the math literature, and then connects this formulation to the component formalism of physics calculations. New pedagogical features, such as new illustrations, tables, and boxed sections, as well as additional “invitation” sections that provide accessible introductions to new material, offer increased visual engagement, clarity, and motivation for students. Part I begins with linear algebraic foundations, follows with the modern component-free definition of tensors, and concludes with applications to physics through the use of tensor products. Part II introduces group theory, including abstract groups and Lie groups and their associated Lie algebras, then intertwines this material with that of Part I by introducing representation theory. Examples and exercises are provided in each chapter for good practice in applying the presented material and techniques. Prerequisites for this text include the standard lower-division mathematics and physics courses, though extensive references are provided for the motivated student who has not yet had these. Advanced undergraduate and beginning graduate students in physics and applied mathematics will find this textbook to be a clear, concise, and engaging introduction to tensors and groups. Reviews of the First Edition “[P]hysicist Nadir Jeevanjee has produced a masterly book that will help other physicists understand those subjects [tensors and groups] as mathematicians understand them... From the first pages, Jeevanjee shows amazing skill in finding fresh, compelling words to bring forward the insight that animates the modern mathematical view...[W]ith compelling force and clarity, he provides many carefully worked-out examples and well-chosen specific problems... Jeevanjee’s clear and forceful writing presents familiar cases with a freshness that will draw in and reassure even a fearful student. [This] is a masterpiece of exposition and explanation that would win credit for even a seasoned author.” —Physics Today "Jeevanjee’s [text] is a valuable piece of work on several counts, including its express pedagogical service rendered to fledgling physicists and the fact that it does indeed give pure mathematicians a way to come to terms with what physicists are saying with the same words we use, but with an ostensibly different meaning. The book is very easy to read, very user-friendly, full of examples...and exercises, and will do the job the author wants it to do with style.” —MAA Reviews
Book Synopsis Algorithmic Learning Theory by : Kamalika Chaudhuri
Download or read book Algorithmic Learning Theory written by Kamalika Chaudhuri and published by Springer. This book was released on 2015-10-04 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the 26th International Conference on Algorithmic Learning Theory, ALT 2015, held in Banff, AB, Canada, in October 2015, and co-located with the 18th International Conference on Discovery Science, DS 2015. The 23 full papers presented in this volume were carefully reviewed and selected from 44 submissions. In addition the book contains 2 full papers summarizing the invited talks and 2 abstracts of invited talks. The papers are organized in topical sections named: inductive inference; learning from queries, teaching complexity; computational learning theory and algorithms; statistical learning theory and sample complexity; online learning, stochastic optimization; and Kolmogorov complexity, algorithmic information theory.
Download or read book Lie Groups written by Claudio Procesi and published by Springer Science & Business Media. This book was released on 2007-10-17 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lie groups has been an increasing area of focus and rich research since the middle of the 20th century. In Lie Groups: An Approach through Invariants and Representations, the author's masterful approach gives the reader a comprehensive treatment of the classical Lie groups along with an extensive introduction to a wide range of topics associated with Lie groups: symmetric functions, theory of algebraic forms, Lie algebras, tensor algebra and symmetry, semisimple Lie algebras, algebraic groups, group representations, invariants, Hilbert theory, and binary forms with fields ranging from pure algebra to functional analysis. By covering sufficient background material, the book is made accessible to a reader with a relatively modest mathematical background. Historical information, examples, exercises are all woven into the text. This unique exposition is suitable for a broad audience, including advanced undergraduates, graduates, mathematicians in a variety of areas from pure algebra to functional analysis and mathematical physics.
Book Synopsis From Vectors to Tensors by : Juan R. Ruiz-Tolosa
Download or read book From Vectors to Tensors written by Juan R. Ruiz-Tolosa and published by Springer Science & Business Media. This book was released on 2005-12-08 with total page 675 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook deals with tensors that are treated as vectors. Coverage details such new tensor concepts as the rotation of tensors, the transposer tensor, the eigentensors, and the permutation tensor structure. The book covers an existing gap between the classic theory of tensors and the possibility of solving tensor problems with a computer. A complementary computer package, written in Mathematica, is available through the Internet.
Book Synopsis Multimodal and Tensor Data Analytics for Industrial Systems Improvement by : Nathan Gaw
Download or read book Multimodal and Tensor Data Analytics for Industrial Systems Improvement written by Nathan Gaw and published by Springer Nature. This book was released on with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Algebra II by : Alexey L. Gorodentsev
Download or read book Algebra II written by Alexey L. Gorodentsev and published by Springer. This book was released on 2017-02-12 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the second volume of an intensive “Russian-style” two-year undergraduate course in abstract algebra, and introduces readers to the basic algebraic structures – fields, rings, modules, algebras, groups, and categories – and explains the main principles of and methods for working with them. The course covers substantial areas of advanced combinatorics, geometry, linear and multilinear algebra, representation theory, category theory, commutative algebra, Galois theory, and algebraic geometry – topics that are often overlooked in standard undergraduate courses. This textbook is based on courses the author has conducted at the Independent University of Moscow and at the Faculty of Mathematics in the Higher School of Economics. The main content is complemented by a wealth of exercises for class discussion, some of which include comments and hints, as well as problems for independent study.
Book Synopsis Linear Algebra and Matrices by : Shmuel Friedland
Download or read book Linear Algebra and Matrices written by Shmuel Friedland and published by SIAM. This book was released on 2018-01-30 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introductory textbook grew out of several courses in linear algebra given over more than a decade and includes such helpful material as constructive discussions about the motivation of fundamental concepts, many worked-out problems in each chapter, and topics rarely covered in typical linear algebra textbooks.The authors use abstract notions and arguments to give the complete proof of the Jordan canonical form and, more generally, the rational canonical form of square matrices over fields. They also provide the notion of tensor products of vector spaces and linear transformations. Matrices are treated in depth, with coverage of the stability of matrix iterations, the eigenvalue properties of linear transformations in inner product spaces, singular value decomposition, and min-max characterizations of Hermitian matrices and nonnegative irreducible matrices. The authors show the many topics and tools encompassed by modern linear algebra to emphasize its relationship to other areas of mathematics. The text is intended for advanced undergraduate students. Beginning graduate students seeking an introduction to the subject will also find it of interest.
Book Synopsis Invariant Algebras and Geometric Reasoning by : Hongbo Li
Download or read book Invariant Algebras and Geometric Reasoning written by Hongbo Li and published by World Scientific. This book was released on 2008 with total page 533 pages. Available in PDF, EPUB and Kindle. Book excerpt: A moving portrait of Africa from Polands most celebrated foreign correspondent - a masterpiece from a modern master. Famous for being in the wrong places at just the right times, Ryszard Kapuscinski arrived in Africa in 1957, at the beginning of the end of colonial rule - the &"sometimes dramatic and painful, sometimes enjoyable and jubilant&" rebirth of a continent.The Shadow of the Sunsums up the authors experiences (&"the record of a 40-year marriage&") in this place that became the central obsession of his remarkable career. From the hopeful years of independence through the bloody disintegration of places like Nigeria, Rwanda and Angola, Kapuscinski recounts great social and political changes through the prism of the ordinary African. He examines the rough-and-ready physical world and identifies the true geography of Africa: a little-understood spiritual universe, an African way of being. He looks also at Africa in the wake of two epoch-making changes: the arrival of AIDS and the definitive departure of the white man. Kapuscinskis rare humanity invests his subjects with a grandeur and a dignity unmatched by any other writer on the Third World, and his unique ability to discern the universal in the particular has never been more powerfully displayed than in this work. From the Trade Paperback edition.
Download or read book Nuclear Science Abstracts written by and published by . This book was released on 1973 with total page 672 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Mathematical Morphology and Its Applications to Signal and Image Processing by : Bernhard Burgeth
Download or read book Mathematical Morphology and Its Applications to Signal and Image Processing written by Bernhard Burgeth and published by Springer. This book was released on 2019-06-19 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the refereed proceedings of the 14th International Symposium on Mathematical Morphology, ISMM 2019, held in Saarbrücken, Germany, in July 2019. The 40 revised full papers presented together with one invited talk were carefully reviewed and selected from 54 submissions. The papers are organized in topical sections on Theory, Discrete Topology and Tomography, Trees and Hierarchies, Multivariate Morphology, Computational Morphology, Machine Learning, Segmentation, Applications in Engineering, and Applications in (Bio)medical Imaging.
Book Synopsis Tensor Products of C*-algebras and Operator Spaces by : Gilles Pisier
Download or read book Tensor Products of C*-algebras and Operator Spaces written by Gilles Pisier and published by Cambridge University Press. This book was released on 2020-02-27 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents an important open problem on operator algebras in a style accessible to young researchers or Ph.D. students.