Adversarial Machine Learning

Download Adversarial Machine Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030997723
Total Pages : 316 pages
Book Rating : 4.0/5 (39 download)

DOWNLOAD NOW!


Book Synopsis Adversarial Machine Learning by : Aneesh Sreevallabh Chivukula

Download or read book Adversarial Machine Learning written by Aneesh Sreevallabh Chivukula and published by Springer Nature. This book was released on 2023-03-06 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: A critical challenge in deep learning is the vulnerability of deep learning networks to security attacks from intelligent cyber adversaries. Even innocuous perturbations to the training data can be used to manipulate the behaviour of deep networks in unintended ways. In this book, we review the latest developments in adversarial attack technologies in computer vision; natural language processing; and cybersecurity with regard to multidimensional, textual and image data, sequence data, and temporal data. In turn, we assess the robustness properties of deep learning networks to produce a taxonomy of adversarial examples that characterises the security of learning systems using game theoretical adversarial deep learning algorithms. The state-of-the-art in adversarial perturbation-based privacy protection mechanisms is also reviewed. We propose new adversary types for game theoretical objectives in non-stationary computational learning environments. Proper quantification of the hypothesis set in the decision problems of our research leads to various functional problems, oracular problems, sampling tasks, and optimization problems. We also address the defence mechanisms currently available for deep learning models deployed in real-world environments. The learning theories used in these defence mechanisms concern data representations, feature manipulations, misclassifications costs, sensitivity landscapes, distributional robustness, and complexity classes of the adversarial deep learning algorithms and their applications. In closing, we propose future research directions in adversarial deep learning applications for resilient learning system design and review formalized learning assumptions concerning the attack surfaces and robustness characteristics of artificial intelligence applications so as to deconstruct the contemporary adversarial deep learning designs. Given its scope, the book will be of interest to Adversarial Machine Learning practitioners and Adversarial Artificial Intelligence researchers whose work involves the design and application of Adversarial Deep Learning.

High-Dimensional Statistics

Download High-Dimensional Statistics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108498027
Total Pages : 571 pages
Book Rating : 4.1/5 (84 download)

DOWNLOAD NOW!


Book Synopsis High-Dimensional Statistics by : Martin J. Wainwright

Download or read book High-Dimensional Statistics written by Martin J. Wainwright and published by Cambridge University Press. This book was released on 2019-02-21 with total page 571 pages. Available in PDF, EPUB and Kindle. Book excerpt: A coherent introductory text from a groundbreaking researcher, focusing on clarity and motivation to build intuition and understanding.

Topics in Identification, Limited Dependent Variables, Partial Observability, Experimentation, and Flexible Modeling

Download Topics in Identification, Limited Dependent Variables, Partial Observability, Experimentation, and Flexible Modeling PDF Online Free

Author :
Publisher : Emerald Group Publishing
ISBN 13 : 1838674217
Total Pages : 234 pages
Book Rating : 4.8/5 (386 download)

DOWNLOAD NOW!


Book Synopsis Topics in Identification, Limited Dependent Variables, Partial Observability, Experimentation, and Flexible Modeling by : Ivan Jeliazkov

Download or read book Topics in Identification, Limited Dependent Variables, Partial Observability, Experimentation, and Flexible Modeling written by Ivan Jeliazkov and published by Emerald Group Publishing. This book was released on 2019-10-18 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume 40B of Advances in Econometrics examines innovations in stochastic frontier analysis, nonparametric and semiparametric modeling and estimation, A/B experiments, big-data analysis, and quantile regression.

Internet of Things. Advances in Information and Communication Technology

Download Internet of Things. Advances in Information and Communication Technology PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031458788
Total Pages : 472 pages
Book Rating : 4.0/5 (314 download)

DOWNLOAD NOW!


Book Synopsis Internet of Things. Advances in Information and Communication Technology by : Deepak Puthal

Download or read book Internet of Things. Advances in Information and Communication Technology written by Deepak Puthal and published by Springer Nature. This book was released on with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Bayesian Estimation and Inference in Computational Anatomy and Neuroimaging: Methods & Applications

Download Bayesian Estimation and Inference in Computational Anatomy and Neuroimaging: Methods & Applications PDF Online Free

Author :
Publisher : Frontiers Media SA
ISBN 13 : 2889459845
Total Pages : 118 pages
Book Rating : 4.8/5 (894 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Estimation and Inference in Computational Anatomy and Neuroimaging: Methods & Applications by : Xiaoying Tang

Download or read book Bayesian Estimation and Inference in Computational Anatomy and Neuroimaging: Methods & Applications written by Xiaoying Tang and published by Frontiers Media SA. This book was released on 2019-08-22 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Anatomy (CA) is an emerging discipline aiming to understand anatomy by utilizing a comprehensive set of mathematical tools. CA focuses on providing precise statistical encodings of anatomy with direct application to a broad range of biological and medical settings. During the past two decades, there has been an ever-increasing pace in the development of neuroimaging techniques, delivering in vivo information on the anatomy and physiological signals of different human organs through a variety of imaging modalities such as MRI, x-ray, CT, and PET. These multi-modality medical images provide valuable data for accurate interpretation and estimation of various biological parameters such as anatomical labels, disease types, cognitive states, functional connectivity between distinct anatomical regions, as well as activation responses to specific stimuli. In the era of big neuroimaging data, Bayes’ theorem provides a powerful tool to deliver statistical conclusions by combining the current information and prior experience. When sufficiently good data is available, Bayes’ theorem can utilize it fully and provide statistical inferences/estimations with the least error rate. Bayes’ theorem arose roughly three hundred years ago and has seen extensive application in many fields of science and technology, including recent neuroimaging, ever since. The last fifteen years have seen a great deal of success in the application of Bayes’ theorem to the field of CA and neuroimaging. That said, given that the power and success of Bayes’ rule largely depends on the validity of its probabilistic inputs, it is still a challenge to perform Bayesian estimation and inference on the typically noisy neuroimaging data of the real world. We assembled contributions focusing on recent developments in CA and neuroimaging through Bayesian estimation and inference, in terms of both methodologies and applications. It is anticipated that the articles in this Research Topic will provide a greater insight into the field of Bayesian imaging analysis.

Models for Ecological Data

Download Models for Ecological Data PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691220123
Total Pages : 634 pages
Book Rating : 4.6/5 (912 download)

DOWNLOAD NOW!


Book Synopsis Models for Ecological Data by : James S. Clark

Download or read book Models for Ecological Data written by James S. Clark and published by Princeton University Press. This book was released on 2020-10-06 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: The environmental sciences are undergoing a revolution in the use of models and data. Facing ecological data sets of unprecedented size and complexity, environmental scientists are struggling to understand and exploit powerful new statistical tools for making sense of ecological processes. In Models for Ecological Data, James Clark introduces ecologists to these modern methods in modeling and computation. Assuming only basic courses in calculus and statistics, the text introduces readers to basic maximum likelihood and then works up to more advanced topics in Bayesian modeling and computation. Clark covers both classical statistical approaches and powerful new computational tools and describes how complexity can motivate a shift from classical to Bayesian methods. Through an available lab manual, the book introduces readers to the practical work of data modeling and computation in the language R. Based on a successful course at Duke University and National Science Foundation-funded institutes on hierarchical modeling, Models for Ecological Data will enable ecologists and other environmental scientists to develop useful models that make sense of ecological data. Consistent treatment from classical to modern Bayes Underlying distribution theory to algorithm development Many examples and applications Does not assume statistical background Extensive supporting appendixes Lab manual in R is available separately

The Economics of Artificial Intelligence

Download The Economics of Artificial Intelligence PDF Online Free

Author :
Publisher : University of Chicago Press
ISBN 13 : 0226833127
Total Pages : 172 pages
Book Rating : 4.2/5 (268 download)

DOWNLOAD NOW!


Book Synopsis The Economics of Artificial Intelligence by : Ajay Agrawal

Download or read book The Economics of Artificial Intelligence written by Ajay Agrawal and published by University of Chicago Press. This book was released on 2024-03-05 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: A timely investigation of the potential economic effects, both realized and unrealized, of artificial intelligence within the United States healthcare system. In sweeping conversations about the impact of artificial intelligence on many sectors of the economy, healthcare has received relatively little attention. Yet it seems unlikely that an industry that represents nearly one-fifth of the economy could escape the efficiency and cost-driven disruptions of AI. The Economics of Artificial Intelligence: Health Care Challenges brings together contributions from health economists, physicians, philosophers, and scholars in law, public health, and machine learning to identify the primary barriers to entry of AI in the healthcare sector. Across original papers and in wide-ranging responses, the contributors analyze barriers of four types: incentives, management, data availability, and regulation. They also suggest that AI has the potential to improve outcomes and lower costs. Understanding both the benefits of and barriers to AI adoption is essential for designing policies that will affect the evolution of the healthcare system.

Partially Linear Models

Download Partially Linear Models PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642577008
Total Pages : 210 pages
Book Rating : 4.6/5 (425 download)

DOWNLOAD NOW!


Book Synopsis Partially Linear Models by : Wolfgang Härdle

Download or read book Partially Linear Models written by Wolfgang Härdle and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last ten years, there has been increasing interest and activity in the general area of partially linear regression smoothing in statistics. Many methods and techniques have been proposed and studied. This monograph hopes to bring an up-to-date presentation of the state of the art of partially linear regression techniques. The emphasis is on methodologies rather than on the theory, with a particular focus on applications of partially linear regression techniques to various statistical problems. These problems include least squares regression, asymptotically efficient estimation, bootstrap resampling, censored data analysis, linear measurement error models, nonlinear measurement models, nonlinear and nonparametric time series models.

Data Fusion and Data Mining for Power System Monitoring

Download Data Fusion and Data Mining for Power System Monitoring PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000065936
Total Pages : 170 pages
Book Rating : 4.0/5 ( download)

DOWNLOAD NOW!


Book Synopsis Data Fusion and Data Mining for Power System Monitoring by : Arturo Román Messina

Download or read book Data Fusion and Data Mining for Power System Monitoring written by Arturo Román Messina and published by CRC Press. This book was released on 2020-06-03 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Fusion and Data Mining for Power System Monitoring provides a comprehensive treatment of advanced data fusion and data mining techniques for power system monitoring with focus on use of synchronized phasor networks. Relevant statistical data mining techniques are given, and efficient methods to cluster and visualize data collected from multiple sensors are discussed. Both linear and nonlinear data-driven mining and fusion techniques are reviewed, with emphasis on the analysis and visualization of massive distributed data sets. Challenges involved in realistic monitoring, visualization, and analysis of observation data from actual events are also emphasized, supported by examples of relevant applications. Features Focuses on systematic illustration of data mining and fusion in power systems Covers issues of standards used in the power industry for data mining and data analytics Applications to a wide range of power networks are provided including distribution and transmission networks Provides holistic approach to the problem of data mining and data fusion using cutting-edge methodologies and technologies Includes applications to massive spatiotemporal data from simulations and actual events

Human Decision-Making Behaviors in Engineering and Management: A Neuropsychological Perspective

Download Human Decision-Making Behaviors in Engineering and Management: A Neuropsychological Perspective PDF Online Free

Author :
Publisher : Frontiers Media SA
ISBN 13 : 2832508650
Total Pages : 249 pages
Book Rating : 4.8/5 (325 download)

DOWNLOAD NOW!


Book Synopsis Human Decision-Making Behaviors in Engineering and Management: A Neuropsychological Perspective by : Pin-Chao Liao

Download or read book Human Decision-Making Behaviors in Engineering and Management: A Neuropsychological Perspective written by Pin-Chao Liao and published by Frontiers Media SA. This book was released on 2022-12-05 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Expert Systems

Download Expert Systems PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080531458
Total Pages : 2125 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Expert Systems by : Cornelius T. Leondes

Download or read book Expert Systems written by Cornelius T. Leondes and published by Elsevier. This book was released on 2001-09-26 with total page 2125 pages. Available in PDF, EPUB and Kindle. Book excerpt: This six-volume set presents cutting-edge advances and applications of expert systems. Because expert systems combine the expertise of engineers, computer scientists, and computer programmers, each group will benefit from buying this important reference work. An "expert system" is a knowledge-based computer system that emulates the decision-making ability of a human expert. The primary role of the expert system is to perform appropriate functions under the close supervision of the human, whose work is supported by that expert system. In the reverse, this same expert system can monitor and double check the human in the performance of a task. Human-computer interaction in our highly complex world requires the development of a wide array of expert systems. Expert systems techniques and applications are presented for a diverse array of topics including Experimental design and decision support The integration of machine learning with knowledge acquisition for the design of expert systems Process planning in design and manufacturing systems and process control applications Knowledge discovery in large-scale knowledge bases Robotic systems Geograhphic information systems Image analysis, recognition and interpretation Cellular automata methods for pattern recognition Real-time fault tolerant control systems CAD-based vision systems in pattern matching processes Financial systems Agricultural applications Medical diagnosis

Issues in Statistics, Decision Making, and Stochastics: 2011 Edition

Download Issues in Statistics, Decision Making, and Stochastics: 2011 Edition PDF Online Free

Author :
Publisher : ScholarlyEditions
ISBN 13 : 1464967059
Total Pages : 288 pages
Book Rating : 4.4/5 (649 download)

DOWNLOAD NOW!


Book Synopsis Issues in Statistics, Decision Making, and Stochastics: 2011 Edition by :

Download or read book Issues in Statistics, Decision Making, and Stochastics: 2011 Edition written by and published by ScholarlyEditions. This book was released on 2012-01-09 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Issues in Statistics, Decision Making, and Stochastics: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Statistics, Decision Making, and Stochastics. The editors have built Issues in Statistics, Decision Making, and Stochastics: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Statistics, Decision Making, and Stochastics in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Statistics, Decision Making, and Stochastics: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Research Anthology on Big Data Analytics, Architectures, and Applications

Download Research Anthology on Big Data Analytics, Architectures, and Applications PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1668436639
Total Pages : 1988 pages
Book Rating : 4.6/5 (684 download)

DOWNLOAD NOW!


Book Synopsis Research Anthology on Big Data Analytics, Architectures, and Applications by : Management Association, Information Resources

Download or read book Research Anthology on Big Data Analytics, Architectures, and Applications written by Management Association, Information Resources and published by IGI Global. This book was released on 2021-09-24 with total page 1988 pages. Available in PDF, EPUB and Kindle. Book excerpt: Society is now completely driven by data with many industries relying on data to conduct business or basic functions within the organization. With the efficiencies that big data bring to all institutions, data is continuously being collected and analyzed. However, data sets may be too complex for traditional data-processing, and therefore, different strategies must evolve to solve the issue. The field of big data works as a valuable tool for many different industries. The Research Anthology on Big Data Analytics, Architectures, and Applications is a complete reference source on big data analytics that offers the latest, innovative architectures and frameworks and explores a variety of applications within various industries. Offering an international perspective, the applications discussed within this anthology feature global representation. Covering topics such as advertising curricula, driven supply chain, and smart cities, this research anthology is ideal for data scientists, data analysts, computer engineers, software engineers, technologists, government officials, managers, CEOs, professors, graduate students, researchers, and academicians.

Autonomous Driving Network

Download Autonomous Driving Network PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1003826385
Total Pages : 396 pages
Book Rating : 4.0/5 (38 download)

DOWNLOAD NOW!


Book Synopsis Autonomous Driving Network by : Wenshuan Dang

Download or read book Autonomous Driving Network written by Wenshuan Dang and published by CRC Press. This book was released on 2024-01-17 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aiming to outline the vision of realizing automated and intelligent communication networks in the era of intelligence, this book describes the development history, application scenarios, theories, architectures, and key technologies of Huawei's Autonomous Driving Network (ADN) solution. In the book, the authors explain the design of the top-level architecture, hierarchical architecture (ANE, NetGraph, and AI Native NE), and key feature architecture (distributed AI and endogenous security) that underpin Huawei's ADN solution. The book delves into various key technologies, including trustworthy AI, distributed AI, digital twin, network simulation, digitization of knowledge and expertise, human-machine symbiosis, NE endogenous intelligence, and endogenous security. It also provides an overview of the standards and level evaluation methods defined by industry and standards organizations, and uses Huawei's ADN solution as an example to illustrate how to implement AN. This book is an essential reference for professionals and researchers who want to gain a deeper understanding of automated and intelligent communication networks and their applications.

A History of Econometrics

Download A History of Econometrics PDF Online Free

Author :
Publisher : OUP Oxford
ISBN 13 : 0191668680
Total Pages : 257 pages
Book Rating : 4.1/5 (916 download)

DOWNLOAD NOW!


Book Synopsis A History of Econometrics by : Duo Qin

Download or read book A History of Econometrics written by Duo Qin and published by OUP Oxford. This book was released on 2013-07-25 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reformation of Econometrics is a sequel to The Formation of Econometrics: A Historical Perspective (1993, OUP) which traces the formation of econometric theory during the period 1930-1960. This book provides an account of the advances in the field of econometrics since the 1970s. Based on original research, it focuses on the reformists' movement and schools of thought and practices that attempted a paradigm shift in econometrics in the 1970s and 1980s. It describes the formation and consolidation of the Cowles Commission (CC) paradigm and traces and analyses the three major methodological attempts to resolve problems involved in model choice and specification of the CC paradigm. These attempts have reoriented the focus of econometric research from internal questions (how to optimally estimate a priori given structural parameters) to external questions (how to choose, design, and specify models). It also examines various modelling issues and problems through two case studies - modelling the Phillips curve and business cycles. The third part of the book delves into the development of three key aspects of model specification in detail - structural parameters, error terms, and model selection and design procedures. The final chapter uses citation analyses to study the impact of the CC paradigm over the span of three and half decades (1970-2005). The citation statistics show that the impact has remained extensive and relatively strong in spite of certain weakening signs. It implies that the reformative attempts have fallen short of causing a paradigm shift.

Statistical Inference as Severe Testing

Download Statistical Inference as Severe Testing PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108563309
Total Pages : 503 pages
Book Rating : 4.1/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Statistical Inference as Severe Testing by : Deborah G. Mayo

Download or read book Statistical Inference as Severe Testing written by Deborah G. Mayo and published by Cambridge University Press. This book was released on 2018-09-20 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.

Signal Processing and Machine Learning for Biomedical Big Data

Download Signal Processing and Machine Learning for Biomedical Big Data PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 149877346X
Total Pages : 624 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Signal Processing and Machine Learning for Biomedical Big Data by : Ervin Sejdic

Download or read book Signal Processing and Machine Learning for Biomedical Big Data written by Ervin Sejdic and published by CRC Press. This book was released on 2018-07-04 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Within the healthcare domain, big data is defined as any ``high volume, high diversity biological, clinical, environmental, and lifestyle information collected from single individuals to large cohorts, in relation to their health and wellness status, at one or several time points.'' Such data is crucial because within it lies vast amounts of invaluable information that could potentially change a patient's life, opening doors to alternate therapies, drugs, and diagnostic tools. Signal Processing and Machine Learning for Biomedical Big Data thus discusses modalities; the numerous ways in which this data is captured via sensors; and various sample rates and dimensionalities. Capturing, analyzing, storing, and visualizing such massive data has required new shifts in signal processing paradigms and new ways of combining signal processing with machine learning tools. This book covers several of these aspects in two ways: firstly, through theoretical signal processing chapters where tools aimed at big data (be it biomedical or otherwise) are described; and, secondly, through application-driven chapters focusing on existing applications of signal processing and machine learning for big biomedical data. This text aimed at the curious researcher working in the field, as well as undergraduate and graduate students eager to learn how signal processing can help with big data analysis. It is the hope of Drs. Sejdic and Falk that this book will bring together signal processing and machine learning researchers to unlock existing bottlenecks within the healthcare field, thereby improving patient quality-of-life. Provides an overview of recent state-of-the-art signal processing and machine learning algorithms for biomedical big data, including applications in the neuroimaging, cardiac, retinal, genomic, sleep, patient outcome prediction, critical care, and rehabilitation domains. Provides contributed chapters from world leaders in the fields of big data and signal processing, covering topics such as data quality, data compression, statistical and graph signal processing techniques, and deep learning and their applications within the biomedical sphere. This book’s material covers how expert domain knowledge can be used to advance signal processing and machine learning for biomedical big data applications.