Databricks ML in Action

Download Databricks ML in Action PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1800564007
Total Pages : 280 pages
Book Rating : 4.8/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Databricks ML in Action by : Stephanie Rivera

Download or read book Databricks ML in Action written by Stephanie Rivera and published by Packt Publishing Ltd. This book was released on 2024-05-17 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get to grips with autogenerating code, deploying ML algorithms, and leveraging various ML lifecycle features on the Databricks Platform, guided by best practices and reusable code for you to try, alter, and build on Key Features Build machine learning solutions faster than peers only using documentation Enhance or refine your expertise with tribal knowledge and concise explanations Follow along with code projects provided in GitHub to accelerate your projects Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionDiscover what makes the Databricks Data Intelligence Platform the go-to choice for top-tier machine learning solutions. Written by a team of industry experts at Databricks with decades of combined experience in big data, machine learning, and data science, Databricks ML in Action presents cloud-agnostic, end-to-end examples with hands-on illustrations of executing data science, machine learning, and generative AI projects on the Databricks Platform. You’ll develop expertise in Databricks' managed MLflow, Vector Search, AutoML, Unity Catalog, and Model Serving as you learn to apply them practically in everyday workflows. This Databricks book not only offers detailed code explanations but also facilitates seamless code importation for practical use. You’ll discover how to leverage the open-source Databricks platform to enhance learning, boost skills, and elevate productivity with supplemental resources. By the end of this book, you'll have mastered the use of Databricks for data science, machine learning, and generative AI, enabling you to deliver outstanding data products.What you will learn Set up a workspace for a data team planning to perform data science Monitor data quality and detect drift Use autogenerated code for ML modeling and data exploration Operationalize ML with feature engineering client, AutoML, VectorSearch, Delta Live Tables, AutoLoader, and Workflows Integrate open-source and third-party applications, such as OpenAI's ChatGPT, into your AI projects Communicate insights through Databricks SQL dashboards and Delta Sharing Explore data and models through the Databricks marketplace Who this book is for This book is for machine learning engineers, data scientists, and technical managers seeking hands-on expertise in implementing and leveraging the Databricks Data Intelligence Platform and its Lakehouse architecture to create data products.

Machine Learning Engineering in Action

Download Machine Learning Engineering in Action PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1638356580
Total Pages : 879 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Engineering in Action by : Ben Wilson

Download or read book Machine Learning Engineering in Action written by Ben Wilson and published by Simon and Schuster. This book was released on 2022-05-17 with total page 879 pages. Available in PDF, EPUB and Kindle. Book excerpt: Field-tested tips, tricks, and design patterns for building machine learning projects that are deployable, maintainable, and secure from concept to production. In Machine Learning Engineering in Action, you will learn: Evaluating data science problems to find the most effective solution Scoping a machine learning project for usage expectations and budget Process techniques that minimize wasted effort and speed up production Assessing a project using standardized prototyping work and statistical validation Choosing the right technologies and tools for your project Making your codebase more understandable, maintainable, and testable Automating your troubleshooting and logging practices Ferrying a machine learning project from your data science team to your end users is no easy task. Machine Learning Engineering in Action will help you make it simple. Inside, you'll find fantastic advice from veteran industry expert Ben Wilson, Principal Resident Solutions Architect at Databricks. Ben introduces his personal toolbox of techniques for building deployable and maintainable production machine learning systems. You'll learn the importance of Agile methodologies for fast prototyping and conferring with stakeholders, while developing a new appreciation for the importance of planning. Adopting well-established software development standards will help you deliver better code management, and make it easier to test, scale, and even reuse your machine learning code. Every method is explained in a friendly, peer-to-peer style and illustrated with production-ready source code. About the technology Deliver maximum performance from your models and data. This collection of reproducible techniques will help you build stable data pipelines, efficient application workflows, and maintainable models every time. Based on decades of good software engineering practice, machine learning engineering ensures your ML systems are resilient, adaptable, and perform in production. About the book Machine Learning Engineering in Action teaches you core principles and practices for designing, building, and delivering successful machine learning projects. You'll discover software engineering techniques like conducting experiments on your prototypes and implementing modular design that result in resilient architectures and consistent cross-team communication. Based on the author's extensive experience, every method in this book has been used to solve real-world projects. What's inside Scoping a machine learning project for usage expectations and budget Choosing the right technologies for your design Making your codebase more understandable, maintainable, and testable Automating your troubleshooting and logging practices About the reader For data scientists who know machine learning and the basics of object-oriented programming. About the author Ben Wilson is Principal Resident Solutions Architect at Databricks, where he developed the Databricks Labs AutoML project, and is an MLflow committer.

Learning Spark

Download Learning Spark PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 1492050016
Total Pages : 400 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Learning Spark by : Jules S. Damji

Download or read book Learning Spark written by Jules S. Damji and published by O'Reilly Media. This book was released on 2020-07-16 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data is bigger, arrives faster, and comes in a variety of formats—and it all needs to be processed at scale for analytics or machine learning. But how can you process such varied workloads efficiently? Enter Apache Spark. Updated to include Spark 3.0, this second edition shows data engineers and data scientists why structure and unification in Spark matters. Specifically, this book explains how to perform simple and complex data analytics and employ machine learning algorithms. Through step-by-step walk-throughs, code snippets, and notebooks, you’ll be able to: Learn Python, SQL, Scala, or Java high-level Structured APIs Understand Spark operations and SQL Engine Inspect, tune, and debug Spark operations with Spark configurations and Spark UI Connect to data sources: JSON, Parquet, CSV, Avro, ORC, Hive, S3, or Kafka Perform analytics on batch and streaming data using Structured Streaming Build reliable data pipelines with open source Delta Lake and Spark Develop machine learning pipelines with MLlib and productionize models using MLflow

Data Stewardship in Action

Download Data Stewardship in Action PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1837638128
Total Pages : 272 pages
Book Rating : 4.8/5 (376 download)

DOWNLOAD NOW!


Book Synopsis Data Stewardship in Action by : Pui Shing Lee

Download or read book Data Stewardship in Action written by Pui Shing Lee and published by Packt Publishing Ltd. This book was released on 2024-02-16 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Take your organization's data maturity to the next level by operationalizing data governance Key Features Develop the mindset and skills essential for successful data stewardship Apply practical advice and industry best practices, spanning data governance, quality management, and compliance, to enhance data stewardship Follow a step-by-step program to develop a data operating model and implement data stewardship effectively Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionIn the competitive data-centric world, mastering data stewardship is not just a requirement—it's the key to organizational success. Unlock strategic excellence with Data Stewardship in Action, your guide to exploring the intricacies of data stewardship and its implementation for maximum efficiency. From business strategy to data strategy, and then to data stewardship, this book shows you how to strategically deploy your workforce, processes, and technology for efficient data processing. You’ll gain mastery over the fundamentals of data stewardship, from understanding the different roles and responsibilities to implementing best practices for data governance. You’ll elevate your data management skills by exploring the technologies and tools for effective data handling. As you progress through the chapters, you’ll realize that this book not only helps you develop the foundational skills to become a successful data steward but also introduces innovative approaches, including leveraging AI and GPT, for enhanced data stewardship. By the end of this book, you’ll be able to build a robust data governance framework by developing policies and procedures, establishing a dedicated data governance team, and creating a data governance roadmap that ensures your organization thrives in the dynamic landscape of data management.What you will learn Enhance your job prospects by understanding the data stewardship field, roles, and responsibilities Discover how to develop a data strategy and translate it into a functional data operating model Develop an effective and efficient data stewardship program Gain practical experience of establishing a data stewardship initiative Implement purposeful governance with measurable ROI Prioritize data use cases with the value and effort matrix Who this book is for This book is for professionals working in the field of data management, including business analysts, data scientists, and data engineers looking to gain a deeper understanding of the data steward role. Senior executives who want to (re)establish the data governance body in their organizations will find this resource invaluable. While accessible to both beginners and professionals, basic knowledge of data management concepts, such as data modeling, data warehousing, and data quality, is a must to get started.

Spark: The Definitive Guide

Download Spark: The Definitive Guide PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491912294
Total Pages : 594 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Spark: The Definitive Guide by : Bill Chambers

Download or read book Spark: The Definitive Guide written by Bill Chambers and published by "O'Reilly Media, Inc.". This book was released on 2018-02-08 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to use, deploy, and maintain Apache Spark with this comprehensive guide, written by the creators of the open-source cluster-computing framework. With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals. Youâ??ll explore the basic operations and common functions of Sparkâ??s structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Sparkâ??s scalable machine-learning library. Get a gentle overview of big data and Spark Learn about DataFrames, SQL, and Datasetsâ??Sparkâ??s core APIsâ??through worked examples Dive into Sparkâ??s low-level APIs, RDDs, and execution of SQL and DataFrames Understand how Spark runs on a cluster Debug, monitor, and tune Spark clusters and applications Learn the power of Structured Streaming, Sparkâ??s stream-processing engine Learn how you can apply MLlib to a variety of problems, including classification or recommendation

Building the Data Lakehouse

Download Building the Data Lakehouse PDF Online Free

Author :
Publisher : Technics Publications
ISBN 13 : 9781634629669
Total Pages : 256 pages
Book Rating : 4.6/5 (296 download)

DOWNLOAD NOW!


Book Synopsis Building the Data Lakehouse by : Bill Inmon

Download or read book Building the Data Lakehouse written by Bill Inmon and published by Technics Publications. This book was released on 2021-10 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: The data lakehouse is the next generation of the data warehouse and data lake, designed to meet today's complex and ever-changing analytics, machine learning, and data science requirements. Learn about the features and architecture of the data lakehouse, along with its powerful analytical infrastructure. Appreciate how the universal common connector blends structured, textual, analog, and IoT data. Maintain the lakehouse for future generations through Data Lakehouse Housekeeping and Data Future-proofing. Know how to incorporate the lakehouse into an existing data governance strategy. Incorporate data catalogs, data lineage tools, and open source software into your architecture to ensure your data scientists, analysts, and end users live happily ever after.

Beginning Apache Spark Using Azure Databricks

Download Beginning Apache Spark Using Azure Databricks PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1484257812
Total Pages : 281 pages
Book Rating : 4.4/5 (842 download)

DOWNLOAD NOW!


Book Synopsis Beginning Apache Spark Using Azure Databricks by : Robert Ilijason

Download or read book Beginning Apache Spark Using Azure Databricks written by Robert Ilijason and published by Apress. This book was released on 2020-06-11 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analyze vast amounts of data in record time using Apache Spark with Databricks in the Cloud. Learn the fundamentals, and more, of running analytics on large clusters in Azure and AWS, using Apache Spark with Databricks on top. Discover how to squeeze the most value out of your data at a mere fraction of what classical analytics solutions cost, while at the same time getting the results you need, incrementally faster. This book explains how the confluence of these pivotal technologies gives you enormous power, and cheaply, when it comes to huge datasets. You will begin by learning how cloud infrastructure makes it possible to scale your code to large amounts of processing units, without having to pay for the machinery in advance. From there you will learn how Apache Spark, an open source framework, can enable all those CPUs for data analytics use. Finally, you will see how services such as Databricks provide the power of Apache Spark, without you having to know anything about configuring hardware or software. By removing the need for expensive experts and hardware, your resources can instead be allocated to actually finding business value in the data. This book guides you through some advanced topics such as analytics in the cloud, data lakes, data ingestion, architecture, machine learning, and tools, including Apache Spark, Apache Hadoop, Apache Hive, Python, and SQL. Valuable exercises help reinforce what you have learned. What You Will Learn Discover the value of big data analytics that leverage the power of the cloudGet started with Databricks using SQL and Python in either Microsoft Azure or AWSUnderstand the underlying technology, and how the cloud and Apache Spark fit into the bigger picture See how these tools are used in the real world Run basic analytics, including machine learning, on billions of rows at a fraction of a cost or free Who This Book Is For Data engineers, data scientists, and cloud architects who want or need to run advanced analytics in the cloud. It is assumed that the reader has data experience, but perhaps minimal exposure to Apache Spark and Azure Databricks. The book is also recommended for people who want to get started in the analytics field, as it provides a strong foundation.

Mastering Data Engineering and Analytics with Databricks

Download Mastering Data Engineering and Analytics with Databricks PDF Online Free

Author :
Publisher : Orange Education Pvt Ltd
ISBN 13 : 8196862040
Total Pages : 567 pages
Book Rating : 4.1/5 (968 download)

DOWNLOAD NOW!


Book Synopsis Mastering Data Engineering and Analytics with Databricks by : Manoj Kumar

Download or read book Mastering Data Engineering and Analytics with Databricks written by Manoj Kumar and published by Orange Education Pvt Ltd. This book was released on 2024-09-30 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: TAGLINE Master Databricks to Transform Data into Strategic Insights for Tomorrow’s Business Challenges KEY FEATURES ● Combines theory with practical steps to master Databricks, Delta Lake, and MLflow. ● Real-world examples from FMCG and CPG sectors demonstrate Databricks in action. ● Covers real-time data processing, ML integration, and CI/CD for scalable pipelines. ● Offers proven strategies to optimize workflows and avoid common pitfalls. DESCRIPTION In today’s data-driven world, mastering data engineering is crucial for driving innovation and delivering real business impact. Databricks is one of the most powerful platforms which unifies data, analytics and AI requirements of numerous organizations worldwide. Mastering Data Engineering and Analytics with Databricks goes beyond the basics, offering a hands-on, practical approach tailored for professionals eager to excel in the evolving landscape of data engineering and analytics. This book uniquely blends foundational knowledge with advanced applications, equipping readers with the expertise to build, optimize, and scale data pipelines that meet real-world business needs. With a focus on actionable learning, it delves into complex workflows, including real-time data processing, advanced optimization with Delta Lake, and seamless ML integration with MLflow—skills critical for today’s data professionals. Drawing from real-world case studies in FMCG and CPG industries, this book not only teaches you how to implement Databricks solutions but also provides strategic insights into tackling industry-specific challenges. From setting up your environment to deploying CI/CD pipelines, you'll gain a competitive edge by mastering techniques that are directly applicable to your organization’s data strategy. By the end, you’ll not just understand Databricks—you’ll command it, positioning yourself as a leader in the data engineering space. WHAT WILL YOU LEARN ● Design and implement scalable, high-performance data pipelines using Databricks for various business use cases. ● Optimize query performance and efficiently manage cloud resources for cost-effective data processing. ● Seamlessly integrate machine learning models into your data engineering workflows for smarter automation. ● Build and deploy real-time data processing solutions for timely and actionable insights. ● Develop reliable and fault-tolerant Delta Lake architectures to support efficient data lakes at scale. WHO IS THIS BOOK FOR? This book is designed for data engineering students, aspiring data engineers, experienced data professionals, cloud data architects, data scientists and analysts looking to expand their skill sets, as well as IT managers seeking to master data engineering and analytics with Databricks. A basic understanding of data engineering concepts, familiarity with data analytics, and some experience with cloud computing or programming languages such as Python or SQL will help readers fully benefit from the book’s content. TABLE OF CONTENTS SECTION 1 1. Introducing Data Engineering with Databricks 2. Setting Up a Databricks Environment for Data Engineering 3. Working with Databricks Utilities and Clusters SECTION 2 4. Extracting and Loading Data Using Databricks 5. Transforming Data with Databricks 6. Handling Streaming Data with Databricks 7. Creating Delta Live Tables 8. Data Partitioning and Shuffling 9. Performance Tuning and Best Practices 10. Workflow Management 11. Databricks SQL Warehouse 12. Data Storage and Unity Catalog 13. Monitoring Databricks Clusters and Jobs 14. Production Deployment Strategies 15. Maintaining Data Pipelines in Production 16. Managing Data Security and Governance 17. Real-World Data Engineering Use Cases with Databricks 18. AI and ML Essentials 19. Integrating Databricks with External Tools Index

Databricks Data Intelligence Platform

Download Databricks Data Intelligence Platform PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 :
Total Pages : 481 pages
Book Rating : 4.8/5 (688 download)

DOWNLOAD NOW!


Book Synopsis Databricks Data Intelligence Platform by : Nikhil Gupta

Download or read book Databricks Data Intelligence Platform written by Nikhil Gupta and published by Springer Nature. This book was released on with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Machine Learning Engineering with MLflow

Download Machine Learning Engineering with MLflow PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1800561695
Total Pages : 249 pages
Book Rating : 4.8/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Engineering with MLflow by : Natu Lauchande

Download or read book Machine Learning Engineering with MLflow written by Natu Lauchande and published by Packt Publishing Ltd. This book was released on 2021-08-27 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get up and running, and productive in no time with MLflow using the most effective machine learning engineering approach Key FeaturesExplore machine learning workflows for stating ML problems in a concise and clear manner using MLflowUse MLflow to iteratively develop a ML model and manage it Discover and work with the features available in MLflow to seamlessly take a model from the development phase to a production environmentBook Description MLflow is a platform for the machine learning life cycle that enables structured development and iteration of machine learning models and a seamless transition into scalable production environments. This book will take you through the different features of MLflow and how you can implement them in your ML project. You will begin by framing an ML problem and then transform your solution with MLflow, adding a workbench environment, training infrastructure, data management, model management, experimentation, and state-of-the-art ML deployment techniques on the cloud and premises. The book also explores techniques to scale up your workflow as well as performance monitoring techniques. As you progress, you'll discover how to create an operational dashboard to manage machine learning systems. Later, you will learn how you can use MLflow in the AutoML, anomaly detection, and deep learning context with the help of use cases. In addition to this, you will understand how to use machine learning platforms for local development as well as for cloud and managed environments. This book will also show you how to use MLflow in non-Python-based languages such as R and Java, along with covering approaches to extend MLflow with Plugins. By the end of this machine learning book, you will be able to produce and deploy reliable machine learning algorithms using MLflow in multiple environments. What you will learnDevelop your machine learning project locally with MLflow's different featuresSet up a centralized MLflow tracking server to manage multiple MLflow experimentsCreate a model life cycle with MLflow by creating custom modelsUse feature streams to log model results with MLflowDevelop the complete training pipeline infrastructure using MLflow featuresSet up an inference-based API pipeline and batch pipeline in MLflowScale large volumes of data by integrating MLflow with high-performance big data librariesWho this book is for This book is for data scientists, machine learning engineers, and data engineers who want to gain hands-on machine learning engineering experience and learn how they can manage an end-to-end machine learning life cycle with the help of MLflow. Intermediate-level knowledge of the Python programming language is expected.

Practical Machine Learning on Databricks

Download Practical Machine Learning on Databricks PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1801818290
Total Pages : 244 pages
Book Rating : 4.8/5 (18 download)

DOWNLOAD NOW!


Book Synopsis Practical Machine Learning on Databricks by : Debu Sinha

Download or read book Practical Machine Learning on Databricks written by Debu Sinha and published by Packt Publishing Ltd. This book was released on 2023-11-24 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: Take your machine learning skills to the next level by mastering databricks and building robust ML pipeline solutions for future ML innovations Key Features Learn to build robust ML pipeline solutions for databricks transition Master commonly available features like AutoML and MLflow Leverage data governance and model deployment using MLflow model registry Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionUnleash the potential of databricks for end-to-end machine learning with this comprehensive guide, tailored for experienced data scientists and developers transitioning from DIY or other cloud platforms. Building on a strong foundation in Python, Practical Machine Learning on Databricks serves as your roadmap from development to production, covering all intermediary steps using the databricks platform. You’ll start with an overview of machine learning applications, databricks platform features, and MLflow. Next, you’ll dive into data preparation, model selection, and training essentials and discover the power of databricks feature store for precomputing feature tables. You’ll also learn to kickstart your projects using databricks AutoML and automate retraining and deployment through databricks workflows. By the end of this book, you’ll have mastered MLflow for experiment tracking, collaboration, and advanced use cases like model interpretability and governance. The book is enriched with hands-on example code at every step. While primarily focused on generally available features, the book equips you to easily adapt to future innovations in machine learning, databricks, and MLflow.What you will learn Transition smoothly from DIY setups to databricks Master AutoML for quick ML experiment setup Automate model retraining and deployment Leverage databricks feature store for data prep Use MLflow for effective experiment tracking Gain practical insights for scalable ML solutions Find out how to handle model drifts in production environments Who this book is forThis book is for experienced data scientists, engineers, and developers proficient in Python, statistics, and ML lifecycle looking to transition to databricks from DIY clouds. Introductory Spark knowledge is a must to make the most out of this book, however, end-to-end ML workflows will be covered. If you aim to accelerate your machine learning workflows and deploy scalable, robust solutions, this book is an indispensable resource.

Automated Machine Learning in Action

Download Automated Machine Learning in Action PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1617298050
Total Pages : 334 pages
Book Rating : 4.6/5 (172 download)

DOWNLOAD NOW!


Book Synopsis Automated Machine Learning in Action by : Qingquan Song

Download or read book Automated Machine Learning in Action written by Qingquan Song and published by Simon and Schuster. This book was released on 2022-06-07 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Automated Machine Learning in Action reveals how you can automate the burdensome elements of designing and tuning your machine learning systems. --

Distributed Data Systems with Azure Databricks

Download Distributed Data Systems with Azure Databricks PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1838642692
Total Pages : 414 pages
Book Rating : 4.8/5 (386 download)

DOWNLOAD NOW!


Book Synopsis Distributed Data Systems with Azure Databricks by : Alan Bernardo Palacio

Download or read book Distributed Data Systems with Azure Databricks written by Alan Bernardo Palacio and published by Packt Publishing Ltd. This book was released on 2021-05-25 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quickly build and deploy massive data pipelines and improve productivity using Azure Databricks Key FeaturesGet to grips with the distributed training and deployment of machine learning and deep learning modelsLearn how ETLs are integrated with Azure Data Factory and Delta LakeExplore deep learning and machine learning models in a distributed computing infrastructureBook Description Microsoft Azure Databricks helps you to harness the power of distributed computing and apply it to create robust data pipelines, along with training and deploying machine learning and deep learning models. Databricks' advanced features enable developers to process, transform, and explore data. Distributed Data Systems with Azure Databricks will help you to put your knowledge of Databricks to work to create big data pipelines. The book provides a hands-on approach to implementing Azure Databricks and its associated methodologies that will make you productive in no time. Complete with detailed explanations of essential concepts, practical examples, and self-assessment questions, you’ll begin with a quick introduction to Databricks core functionalities, before performing distributed model training and inference using TensorFlow and Spark MLlib. As you advance, you’ll explore MLflow Model Serving on Azure Databricks and implement distributed training pipelines using HorovodRunner in Databricks. Finally, you’ll discover how to transform, use, and obtain insights from massive amounts of data to train predictive models and create entire fully working data pipelines. By the end of this MS Azure book, you’ll have gained a solid understanding of how to work with Databricks to create and manage an entire big data pipeline. What you will learnCreate ETLs for big data in Azure DatabricksTrain, manage, and deploy machine learning and deep learning modelsIntegrate Databricks with Azure Data Factory for extract, transform, load (ETL) pipeline creationDiscover how to use Horovod for distributed deep learningFind out how to use Delta Engine to query and process data from Delta LakeUnderstand how to use Data Factory in combination with DatabricksUse Structured Streaming in a production-like environmentWho this book is for This book is for software engineers, machine learning engineers, data scientists, and data engineers who are new to Azure Databricks and want to build high-quality data pipelines without worrying about infrastructure. Knowledge of Azure Databricks basics is required to learn the concepts covered in this book more effectively. A basic understanding of machine learning concepts and beginner-level Python programming knowledge is also recommended.

Hands-On Machine Learning with Azure

Download Hands-On Machine Learning with Azure PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1789130271
Total Pages : 331 pages
Book Rating : 4.7/5 (891 download)

DOWNLOAD NOW!


Book Synopsis Hands-On Machine Learning with Azure by : Thomas K Abraham

Download or read book Hands-On Machine Learning with Azure written by Thomas K Abraham and published by Packt Publishing Ltd. This book was released on 2018-10-31 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: Implement machine learning, cognitive services, and artificial intelligence solutions by leveraging Azure cloud technologies Key FeaturesLearn advanced concepts in Azure ML and the Cortana Intelligence Suite architectureExplore ML Server using SQL Server and HDInsight capabilitiesImplement various tools in Azure to build and deploy machine learning modelsBook Description Implementing Machine learning (ML) and Artificial Intelligence (AI) in the cloud had not been possible earlier due to the lack of processing power and storage. However, Azure has created ML and AI services that are easy to implement in the cloud. Hands-On Machine Learning with Azure teaches you how to perform advanced ML projects in the cloud in a cost-effective way. The book begins by covering the benefits of ML and AI in the cloud. You will then explore Microsoft’s Team Data Science Process to establish a repeatable process for successful AI development and implementation. You will also gain an understanding of AI technologies available in Azure and the Cognitive Services APIs to integrate them into bot applications. This book lets you explore prebuilt templates with Azure Machine Learning Studio and build a model using canned algorithms that can be deployed as web services. The book then takes you through a preconfigured series of virtual machines in Azure targeted at AI development scenarios. You will get to grips with the ML Server and its capabilities in SQL and HDInsight. In the concluding chapters, you’ll integrate patterns with other non-AI services in Azure. By the end of this book, you will be fully equipped to implement smart cognitive actions in your models. What you will learnDiscover the benefits of leveraging the cloud for ML and AIUse Cognitive Services APIs to build intelligent botsBuild a model using canned algorithms from Microsoft and deploy it as a web serviceDeploy virtual machines in AI development scenariosApply R, Python, SQL Server, and Spark in AzureBuild and deploy deep learning solutions with CNTK, MMLSpark, and TensorFlowImplement model retraining in IoT, Streaming, and Blockchain solutionsExplore best practices for integrating ML and AI functions with ADLA and logic appsWho this book is for If you are a data scientist or developer familiar with Azure ML and cognitive services and want to create smart models and make sense of data in the cloud, this book is for you. You’ll also find this book useful if you want to bring powerful machine learning services into your cloud applications. Some experience with data manipulation and processing, using languages like SQL, Python, and R, will aid in understanding the concepts covered in this book

Learning PySpark

Download Learning PySpark PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1786466252
Total Pages : 273 pages
Book Rating : 4.7/5 (864 download)

DOWNLOAD NOW!


Book Synopsis Learning PySpark by : Tomasz Drabas

Download or read book Learning PySpark written by Tomasz Drabas and published by Packt Publishing Ltd. This book was released on 2017-02-27 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build data-intensive applications locally and deploy at scale using the combined powers of Python and Spark 2.0 About This Book Learn why and how you can efficiently use Python to process data and build machine learning models in Apache Spark 2.0 Develop and deploy efficient, scalable real-time Spark solutions Take your understanding of using Spark with Python to the next level with this jump start guide Who This Book Is For If you are a Python developer who wants to learn about the Apache Spark 2.0 ecosystem, this book is for you. A firm understanding of Python is expected to get the best out of the book. Familiarity with Spark would be useful, but is not mandatory. What You Will Learn Learn about Apache Spark and the Spark 2.0 architecture Build and interact with Spark DataFrames using Spark SQL Learn how to solve graph and deep learning problems using GraphFrames and TensorFrames respectively Read, transform, and understand data and use it to train machine learning models Build machine learning models with MLlib and ML Learn how to submit your applications programmatically using spark-submit Deploy locally built applications to a cluster In Detail Apache Spark is an open source framework for efficient cluster computing with a strong interface for data parallelism and fault tolerance. This book will show you how to leverage the power of Python and put it to use in the Spark ecosystem. You will start by getting a firm understanding of the Spark 2.0 architecture and how to set up a Python environment for Spark. You will get familiar with the modules available in PySpark. You will learn how to abstract data with RDDs and DataFrames and understand the streaming capabilities of PySpark. Also, you will get a thorough overview of machine learning capabilities of PySpark using ML and MLlib, graph processing using GraphFrames, and polyglot persistence using Blaze. Finally, you will learn how to deploy your applications to the cloud using the spark-submit command. By the end of this book, you will have established a firm understanding of the Spark Python API and how it can be used to build data-intensive applications. Style and approach This book takes a very comprehensive, step-by-step approach so you understand how the Spark ecosystem can be used with Python to develop efficient, scalable solutions. Every chapter is standalone and written in a very easy-to-understand manner, with a focus on both the hows and the whys of each concept.

Data Analysis with Python and PySpark

Download Data Analysis with Python and PySpark PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1617297208
Total Pages : 454 pages
Book Rating : 4.6/5 (172 download)

DOWNLOAD NOW!


Book Synopsis Data Analysis with Python and PySpark by : Jonathan Rioux

Download or read book Data Analysis with Python and PySpark written by Jonathan Rioux and published by Simon and Schuster. This book was released on 2022-03-22 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Think big about your data! PySpark brings the powerful Spark big data processing engine to the Python ecosystem, letting you seamlessly scale up your data tasks and create lightning-fast pipelines.In Data Analysis with Python and PySpark you will learn how to:Manage your data as it scales across multiple machines, Scale up your data programs with full confidence, Read and write data to and from a variety of sources and formats, Deal with messy data with PySpark's data manipulation functionality, Discover new data sets and perform exploratory data analysis, Build automated data pipelines that transform, summarize, and get insights from data, Troubleshoot common PySpark errors, Creating reliable long-running jobs. Data Analysis with Python and PySpark is your guide to delivering successful Python-driven data projects. Packed with relevant examples and essential techniques, this practical book teaches you to build pipelines for reporting, machine learning, and other data-centric tasks. Quick exercises in every chapter help you practice what you've learned, and rapidly start implementing PySpark into your data systems. No previous knowledge of Spark is required.Data Analysis with Python and PySpark helps you solve the daily challenges of data science with PySpark. You'll learn how to scale your processing capabilities across multiple machines while ingesting data from any source--whether that's Hadoop clusters, cloud data storage, or local data files. Once you've covered the fundamentals, you'll explore the full versatility of PySpark by building machine learning pipelines, and blending Python, pandas, and PySpark code.

Data Mesh in Action

Download Data Mesh in Action PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1638351848
Total Pages : 326 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Data Mesh in Action by : Jacek Majchrzak

Download or read book Data Mesh in Action written by Jacek Majchrzak and published by Simon and Schuster. This book was released on 2023-03-21 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: Revolutionize the way your organization approaches data with a data mesh! This new decentralized architecture outpaces monolithic lakes and warehouses and can work for a company of any size. In Data Mesh in Action you will learn how to: Implement a data mesh in your organization Turn data into a data product Move from your current data architecture to a data mesh Identify data domains, and decompose an organization into smaller, manageable domains Set up the central governance and local governance levels over data Balance responsibilities between the two levels of governance Establish a platform that allows efficient connection of distributed data products and automated governance Data Mesh in Action reveals how this groundbreaking architecture looks for both small startups and large enterprises. You won’t need any new technology—this book shows you how to start implementing a data mesh with flexible processes and organizational change. You’ll explore both an extended case study and multiple real-world examples. As you go, you’ll be expertly guided through discussions around Socio-Technical Architecture and Domain-Driven Design with the goal of building a sleek data-as-a-product system. Plus, dozens of workshop techniques for both in-person and remote meetings help you onboard colleagues and drive a successful transition. About the technology Business increasingly relies on efficiently storing and accessing large volumes of data. The data mesh is a new way to decentralize data management that radically improves security and discoverability. A well-designed data mesh simplifies self-service data consumption and reduces the bottlenecks created by monolithic data architectures. About the book Data Mesh in Action teaches you pragmatic ways to decentralize your data and organize it into an effective data mesh. You’ll start by building a minimum viable data product, which you’ll expand into a self-service data platform, chapter-by-chapter. You’ll love the book’s unique “sliders” that adjust the mesh to meet your specific needs. You’ll also learn processes and leadership techniques that will change the way you and your colleagues think about data. What's inside Decompose an organization into manageable domains Turn data into a data product Set up central and local governance levels Build a fit-for-purpose data platform Improve management, initiation, and support techniques About the reader For data professionals. Requires no specific programming stack or data platform. About the author Jacek Majchrzak is a hands-on lead data architect. Dr. Sven Balnojan manages data products and teams. Dr. Marian Siwiak is a data scientist and a management consultant for IT, scientific, and technical projects. Table of Contents PART 1 FOUNDATIONS 1 The what and why of the data mesh 2 Is a data mesh right for you? 3 Kickstart your data mesh MVP in a month PART 2 THE FOUR PRINCIPLES IN PRACTICE 4 Domain ownership 5 Data as a product 6 Federated computational governance 7 The self-serve data platform PART 3 INFRASTRUCTURE AND TECHNICAL ARCHITECTURE 8 Comparing self-serve data platforms 9 Solution architecture design