Data Science

Download Data Science PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429554354
Total Pages : 345 pages
Book Rating : 4.4/5 (295 download)

DOWNLOAD NOW!


Book Synopsis Data Science by : Qurban A Memon

Download or read book Data Science written by Qurban A Memon and published by CRC Press. This book was released on 2019-09-26 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to provide an internationally respected collection of scientific research methods, technologies and applications in the area of data science. This book can prove useful to the researchers, professors, research students and practitioners as it reports novel research work on challenging topics in the area surrounding data science. In this book, some of the chapters are written in tutorial style concerning machine learning algorithms, data analysis, information design, infographics, relevant applications, etc. The book is structured as follows: • Part I: Data Science: Theory, Concepts, and Algorithms This part comprises five chapters on data Science theory, concepts, techniques and algorithms. • Part II: Data Design and Analysis This part comprises five chapters on data design and analysis. • Part III: Applications and New Trends in Data Science This part comprises four chapters on applications and new trends in data science.

Data Science

Download Data Science PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811616817
Total Pages : 444 pages
Book Rating : 4.8/5 (116 download)

DOWNLOAD NOW!


Book Synopsis Data Science by : Gyanendra K. Verma

Download or read book Data Science written by Gyanendra K. Verma and published by Springer Nature. This book was released on 2021-08-19 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book targets an audience with a basic understanding of deep learning, its architectures, and its application in the multimedia domain. Background in machine learning is helpful in exploring various aspects of deep learning. Deep learning models have a major impact on multimedia research and raised the performance bar substantially in many of the standard evaluations. Moreover, new multi-modal challenges are tackled, which older systems would not have been able to handle. However, it is very difficult to comprehend, let alone guide, the process of learning in deep neural networks, there is an air of uncertainty about exactly what and how these networks learn. By the end of the book, the readers will have an understanding of different deep learning approaches, models, pre-trained models, and familiarity with the implementation of various deep learning algorithms using various frameworks and libraries.

Data Science in Theory and Practice

Download Data Science in Theory and Practice PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119674689
Total Pages : 404 pages
Book Rating : 4.1/5 (196 download)

DOWNLOAD NOW!


Book Synopsis Data Science in Theory and Practice by : Maria Cristina Mariani

Download or read book Data Science in Theory and Practice written by Maria Cristina Mariani and published by John Wiley & Sons. This book was released on 2021-10-12 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: DATA SCIENCE IN THEORY AND PRACTICE EXPLORE THE FOUNDATIONS OF DATA SCIENCE WITH THIS INSIGHTFUL NEW RESOURCE Data Science in Theory and Practice delivers a comprehensive treatment of the mathematical and statistical models useful for analyzing data sets arising in various disciplines, like banking, finance, health care, bioinformatics, security, education, and social services. Written in five parts, the book examines some of the most commonly used and fundamental mathematical and statistical concepts that form the basis of data science. The authors go on to analyze various data transformation techniques useful for extracting information from raw data, long memory behavior, and predictive modeling. The book offers readers a multitude of topics all relevant to the analysis of complex data sets. Along with a robust exploration of the theory underpinning data science, it contains numerous applications to specific and practical problems. The book also provides examples of code algorithms in R and Python and provides pseudo-algorithms to port the code to any other language. Ideal for students and practitioners without a strong background in data science, readers will also learn from topics like: Analyses of foundational theoretical subjects, including the history of data science, matrix algebra and random vectors, and multivariate analysis A comprehensive examination of time series forecasting, including the different components of time series and transformations to achieve stationarity Introductions to both the R and Python programming languages, including basic data types and sample manipulations for both languages An exploration of algorithms, including how to write one and how to perform an asymptotic analysis A comprehensive discussion of several techniques for analyzing and predicting complex data sets Perfect for advanced undergraduate and graduate students in Data Science, Business Analytics, and Statistics programs, Data Science in Theory and Practice will also earn a place in the libraries of practicing data scientists, data and business analysts, and statisticians in the private sector, government, and academia.

Data Science: Theory and Applications

Download Data Science: Theory and Applications PDF Online Free

Author :
Publisher : North Holland
ISBN 13 : 0323852009
Total Pages : 348 pages
Book Rating : 4.3/5 (238 download)

DOWNLOAD NOW!


Book Synopsis Data Science: Theory and Applications by :

Download or read book Data Science: Theory and Applications written by and published by North Holland. This book was released on 2021-03-03 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Science: Theory and Applications, Volume 44 in the Handbook of Statistics series, highlights new advances in the field, with this new volume presenting interesting chapters on a variety of interesting topics, including Modeling extreme climatic events using the generalized extreme value distribution, Bayesian Methods in Data Science, Mathematical Modeling in Health Economic Evaluations, Data Science in Cancer Genomics, Blockchain Technology: Theory and Practice, Statistical outline of animal home ranges, an application of set estimation, Application of Data Handling Techniques to Predict Pavement Performance, Analysis of individual treatment effects for enhanced inferences in medicine, and more. Additional sections cover Nonparametric Data Science: Testing Hypotheses in Large Complex Data, From Urban Mobility Problems to Data Science Solutions, and Data Structures and Artificial Intelligence Methods. Provides the authority and expertise of leading contributors from an international board of authors Presents the latest release in the Handbook of Statistics series Updated release includes the latest information on Data Science: Theory and Applications

Trends of Data Science and Applications

Download Trends of Data Science and Applications PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9813368152
Total Pages : 341 pages
Book Rating : 4.8/5 (133 download)

DOWNLOAD NOW!


Book Synopsis Trends of Data Science and Applications by : Siddharth Swarup Rautaray

Download or read book Trends of Data Science and Applications written by Siddharth Swarup Rautaray and published by Springer Nature. This book was released on 2021-03-21 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes an extended version of selected papers presented at the 11th Industry Symposium 2021 held during January 7–10, 2021. The book covers contributions ranging from theoretical and foundation research, platforms, methods, applications, and tools in all areas. It provides theory and practices in the area of data science, which add a social, geographical, and temporal dimension to data science research. It also includes application-oriented papers that prepare and use data in discovery research. This book contains chapters from academia as well as practitioners on big data technologies, artificial intelligence, machine learning, deep learning, data representation and visualization, business analytics, healthcare analytics, bioinformatics, etc. This book is helpful for the students, practitioners, researchers as well as industry professional.

Machine Learning and Data Science

Download Machine Learning and Data Science PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119776473
Total Pages : 276 pages
Book Rating : 4.1/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Data Science by : Prateek Agrawal

Download or read book Machine Learning and Data Science written by Prateek Agrawal and published by John Wiley & Sons. This book was released on 2022-07-25 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: MACHINE LEARNING AND DATA SCIENCE Written and edited by a team of experts in the field, this collection of papers reflects the most up-to-date and comprehensive current state of machine learning and data science for industry, government, and academia. Machine learning (ML) and data science (DS) are very active topics with an extensive scope, both in terms of theory and applications. They have been established as an important emergent scientific field and paradigm driving research evolution in such disciplines as statistics, computing science and intelligence science, and practical transformation in such domains as science, engineering, the public sector, business, social science, and lifestyle. Simultaneously, their applications provide important challenges that can often be addressed only with innovative machine learning and data science algorithms. These algorithms encompass the larger areas of artificial intelligence, data analytics, machine learning, pattern recognition, natural language understanding, and big data manipulation. They also tackle related new scientific challenges, ranging from data capture, creation, storage, retrieval, sharing, analysis, optimization, and visualization, to integrative analysis across heterogeneous and interdependent complex resources for better decision-making, collaboration, and, ultimately, value creation.

Big Data Analytics in Supply Chain Management

Download Big Data Analytics in Supply Chain Management PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000326918
Total Pages : 211 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Big Data Analytics in Supply Chain Management by : Iman Rahimi

Download or read book Big Data Analytics in Supply Chain Management written by Iman Rahimi and published by CRC Press. This book was released on 2020-12-20 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: In a world of soaring digitization, social media, financial transactions, and production and logistics processes constantly produce massive data. Employing analytical tools to extract insights and foresights from data improves the quality, speed, and reliability of solutions to highly intertwined issues faced in supply chain operations. From procurement in Industry 4.0 to sustainable consumption behavior to curriculum development for data scientists, this book offers a wide array of techniques and theories of Big Data Analytics applied to Supply Chain Management. It offers a comprehensive overview and forms a new synthesis by bringing together seemingly divergent fields of research. Intended for Engineering and Business students, scholars, and professionals, this book is a collection of state-of-the-art research and best practices to spur discussion about and extend the cumulant knowledge of emerging supply chain problems.

Data Science: Theory and Applications

Download Data Science: Theory and Applications PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0323852017
Total Pages : 350 pages
Book Rating : 4.3/5 (238 download)

DOWNLOAD NOW!


Book Synopsis Data Science: Theory and Applications by :

Download or read book Data Science: Theory and Applications written by and published by Elsevier. This book was released on 2021-02-12 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Science: Theory and Applications, Volume 44 in the Handbook of Statistics series, highlights new advances in the field, with this new volume presenting interesting chapters on a variety of interesting topics, including Modeling extreme climatic events using the generalized extreme value distribution, Bayesian Methods in Data Science, Mathematical Modeling in Health Economic Evaluations, Data Science in Cancer Genomics, Blockchain Technology: Theory and Practice, Statistical outline of animal home ranges, an application of set estimation, Application of Data Handling Techniques to Predict Pavement Performance, Analysis of individual treatment effects for enhanced inferences in medicine, and more. Additional sections cover Nonparametric Data Science: Testing Hypotheses in Large Complex Data, From Urban Mobility Problems to Data Science Solutions, and Data Structures and Artificial Intelligence Methods. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Handbook of Statistics series - Updated release includes the latest information on Data Science: Theory and Applications

Financial Data Analytics

Download Financial Data Analytics PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030837998
Total Pages : 393 pages
Book Rating : 4.0/5 (38 download)

DOWNLOAD NOW!


Book Synopsis Financial Data Analytics by : Sinem Derindere Köseoğlu

Download or read book Financial Data Analytics written by Sinem Derindere Köseoğlu and published by Springer Nature. This book was released on 2022-04-25 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: ​This book presents both theory of financial data analytics, as well as comprehensive insights into the application of financial data analytics techniques in real financial world situations. It offers solutions on how to logically analyze the enormous amount of structured and unstructured data generated every moment in the finance sector. This data can be used by companies, organizations, and investors to create strategies, as the finance sector rapidly moves towards data-driven optimization. This book provides an efficient resource, addressing all applications of data analytics in the finance sector. International experts from around the globe cover the most important subjects in finance, including data processing, knowledge management, machine learning models, data modeling, visualization, optimization for financial problems, financial econometrics, financial time series analysis, project management, and decision making. The authors provide empirical evidence as examples of specific topics. By combining both applications and theory, the book offers a holistic approach. Therefore, it is a must-read for researchers and scholars of financial economics and finance, as well as practitioners interested in a better understanding of financial data analytics.

Network Models for Data Science

Download Network Models for Data Science PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108835767
Total Pages : 501 pages
Book Rating : 4.1/5 (88 download)

DOWNLOAD NOW!


Book Synopsis Network Models for Data Science by : Alan Julian Izenman

Download or read book Network Models for Data Science written by Alan Julian Izenman and published by Cambridge University Press. This book was released on 2022-12-31 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book to describe modern methods for analyzing complex networks arising from a wide range of disciplines.

Data Science: New Issues, Challenges and Applications

Download Data Science: New Issues, Challenges and Applications PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030392503
Total Pages : 325 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Data Science: New Issues, Challenges and Applications by : Gintautas Dzemyda

Download or read book Data Science: New Issues, Challenges and Applications written by Gintautas Dzemyda and published by Springer Nature. This book was released on 2020-02-13 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains 16 chapters by researchers working in various fields of data science. They focus on theory and applications in language technologies, optimization, computational thinking, intelligent decision support systems, decomposition of signals, model-driven development methodologies, interoperability of enterprise applications, anomaly detection in financial markets, 3D virtual reality, monitoring of environmental data, convolutional neural networks, knowledge storage, data stream classification, and security in social networking. The respective papers highlight a wealth of issues in, and applications of, data science. Modern technologies allow us to store and transfer large amounts of data quickly. They can be very diverse - images, numbers, streaming, related to human behavior and physiological parameters, etc. Whether the data is just raw numbers, crude images, or will help solve current problems and predict future developments, depends on whether we can effectively process and analyze it. Data science is evolving rapidly. However, it is still a very young field. In particular, data science is concerned with visualizations, statistics, pattern recognition, neurocomputing, image analysis, machine learning, artificial intelligence, databases and data processing, data mining, big data analytics, and knowledge discovery in databases. It also has many interfaces with optimization, block chaining, cyber-social and cyber-physical systems, Internet of Things (IoT), social computing, high-performance computing, in-memory key-value stores, cloud computing, social computing, data feeds, overlay networks, cognitive computing, crowdsource analysis, log analysis, container-based virtualization, and lifetime value modeling. Again, all of these areas are highly interrelated. In addition, data science is now expanding to new fields of application: chemical engineering, biotechnology, building energy management, materials microscopy, geographic research, learning analytics, radiology, metal design, ecosystem homeostasis investigation, and many others.

High-Dimensional Probability

Download High-Dimensional Probability PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108415199
Total Pages : 299 pages
Book Rating : 4.1/5 (84 download)

DOWNLOAD NOW!


Book Synopsis High-Dimensional Probability by : Roman Vershynin

Download or read book High-Dimensional Probability written by Roman Vershynin and published by Cambridge University Press. This book was released on 2018-09-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.

Mathematical Underpinnings of Analytics

Download Mathematical Underpinnings of Analytics PDF Online Free

Author :
Publisher : Oxford University Press, USA
ISBN 13 : 0198725094
Total Pages : 277 pages
Book Rating : 4.1/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Underpinnings of Analytics by : Peter Grindrod

Download or read book Mathematical Underpinnings of Analytics written by Peter Grindrod and published by Oxford University Press, USA. This book was released on 2015 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: A cutting edge graduate level book on the way the mathematical analytics of big data can add value and bring competitive advantage to consumer-facing industries.

Classification and Data Analysis

Download Classification and Data Analysis PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030523489
Total Pages : 334 pages
Book Rating : 4.0/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Classification and Data Analysis by : Krzysztof Jajuga

Download or read book Classification and Data Analysis written by Krzysztof Jajuga and published by Springer Nature. This book was released on 2020-08-28 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume gathers peer-reviewed contributions on data analysis, classification and related areas presented at the 28th Conference of the Section on Classification and Data Analysis of the Polish Statistical Association, SKAD 2019, held in Szczecin, Poland, on September 18–20, 2019. Providing a balance between theoretical and methodological contributions and empirical papers, it covers a broad variety of topics, ranging from multivariate data analysis, classification and regression, symbolic (and other) data analysis, visualization, data mining, and computer methods to composite measures, and numerous applications of data analysis methods in economics, finance and other social sciences. The book is intended for a wide audience, including researchers at universities and research institutions, graduate and doctoral students, practitioners, data scientists and employees in public statistical institutions.

An Introduction to Statistical Learning

Download An Introduction to Statistical Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031387473
Total Pages : 617 pages
Book Rating : 4.0/5 (313 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Statistical Learning by : Gareth James

Download or read book An Introduction to Statistical Learning written by Gareth James and published by Springer Nature. This book was released on 2023-08-01 with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.

Recent Advances in Data Science

Download Recent Advances in Data Science PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811587604
Total Pages : 295 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Recent Advances in Data Science by : Henry Han

Download or read book Recent Advances in Data Science written by Henry Han and published by Springer Nature. This book was released on 2020-09-28 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes selected papers of the ​Third International Conference on Data Science, Medicine and Bioinformatics, IDMB 2019, held in Nanning, China, in June 2019. The 19 full papers and 1 short paper were carefully reviewed and selected from 93 submissions. The papers are organized according to the following topical sections: business data science: fintech, management, and analytics.- health and biological data science.- novel data science theory and applications.

Foundations of Data Science

Download Foundations of Data Science PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108617360
Total Pages : 433 pages
Book Rating : 4.1/5 (86 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Data Science by : Avrim Blum

Download or read book Foundations of Data Science written by Avrim Blum and published by Cambridge University Press. This book was released on 2020-01-23 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.