Data Science and Social Research

Download Data Science and Social Research PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319554778
Total Pages : 292 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Data Science and Social Research by : N. Carlo Lauro

Download or read book Data Science and Social Research written by N. Carlo Lauro and published by Springer. This book was released on 2017-11-17 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited volume lays the groundwork for Social Data Science, addressing epistemological issues, methods, technologies, software and applications of data science in the social sciences. It presents data science techniques for the collection, analysis and use of both online and offline new (big) data in social research and related applications. Among others, the individual contributions cover topics like social media, learning analytics, clustering, statistical literacy, recurrence analysis and network analysis. Data science is a multidisciplinary approach based mainly on the methods of statistics and computer science, and its aim is to develop appropriate methodologies for forecasting and decision-making in response to an increasingly complex reality often characterized by large amounts of data (big data) of various types (numeric, ordinal and nominal variables, symbolic data, texts, images, data streams, multi-way data, social networks etc.) and from diverse sources. This book presents selected papers from the international conference on Data Science & Social Research, held in Naples, Italy in February 2016, and will appeal to researchers in the social sciences working in academia as well as in statistical institutes and offices.

Challenges and Applications of Data Analytics in Social Perspectives

Download Challenges and Applications of Data Analytics in Social Perspectives PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 179982568X
Total Pages : 324 pages
Book Rating : 4.7/5 (998 download)

DOWNLOAD NOW!


Book Synopsis Challenges and Applications of Data Analytics in Social Perspectives by : Sathiyamoorthi, V.

Download or read book Challenges and Applications of Data Analytics in Social Perspectives written by Sathiyamoorthi, V. and published by IGI Global. This book was released on 2020-12-04 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: With exponentially increasing amounts of data accumulating in real-time, there is no reason why one should not turn data into a competitive advantage. While machine learning, driven by advancements in artificial intelligence, has made great strides, it has not been able to surpass a number of challenges that still prevail in the way of better success. Such limitations as the lack of better methods, deeper understanding of problems, and advanced tools are hindering progress. Challenges and Applications of Data Analytics in Social Perspectives provides innovative insights into the prevailing challenges in data analytics and its application on social media and focuses on various machine learning and deep learning techniques in improving practice and research. The content within this publication examines topics that include collaborative filtering, data visualization, and edge computing. It provides research ideal for data scientists, data analysts, IT specialists, website designers, e-commerce professionals, government officials, software engineers, social media analysts, industry professionals, academicians, researchers, and students.

Data Analytics for the Social Sciences

Download Data Analytics for the Social Sciences PDF Online Free

Author :
Publisher : Routledge
ISBN 13 : 1000467082
Total Pages : 704 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Data Analytics for the Social Sciences by : G. David Garson

Download or read book Data Analytics for the Social Sciences written by G. David Garson and published by Routledge. This book was released on 2021-11-30 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Analytics for the Social Sciences is an introductory, graduate-level treatment of data analytics for social science. It features applications in the R language, arguably the fastest growing and leading statistical tool for researchers. The book starts with an ethics chapter on the uses and potential abuses of data analytics. Chapters 2 and 3 show how to implement a broad range of statistical procedures in R. Chapters 4 and 5 deal with regression and classification trees and with random forests. Chapter 6 deals with machine learning models and the "caret" package, which makes available to the researcher hundreds of models. Chapter 7 deals with neural network analysis, and Chapter 8 deals with network analysis and visualization of network data. A final chapter treats text analysis, including web scraping, comparative word frequency tables, word clouds, word maps, sentiment analysis, topic analysis, and more. All empirical chapters have two "Quick Start" exercises designed to allow quick immersion in chapter topics, followed by "In Depth" coverage. Data are available for all examples and runnable R code is provided in a "Command Summary". An appendix provides an extended tutorial on R and RStudio. Almost 30 online supplements provide information for the complete book, "books within the book" on a variety of topics, such as agent-based modeling. Rather than focusing on equations, derivations, and proofs, this book emphasizes hands-on obtaining of output for various social science models and how to interpret the output. It is suitable for all advanced level undergraduate and graduate students learning statistical data analysis.

Data Science and Social Research II

Download Data Science and Social Research II PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030512223
Total Pages : 391 pages
Book Rating : 4.0/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Data Science and Social Research II by : Paolo Mariani

Download or read book Data Science and Social Research II written by Paolo Mariani and published by Springer Nature. This book was released on 2020-11-25 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: The peer-reviewed contributions gathered in this book address methods, software and applications of statistics and data science in the social sciences. The data revolution in social science research has not only produced new business models, but has also provided policymakers with better decision-making support tools. In this volume, statisticians, computer scientists and experts on social research discuss the opportunities and challenges of the social data revolution in order to pave the way for addressing new research problems. The respective contributions focus on complex social systems and current methodological advances in extracting social knowledge from large data sets, as well as modern social research on human behavior and society using large data sets. Moreover, they analyze integrated systems designed to take advantage of new social data sources, and discuss quality-related issues. The papers were originally presented at the 2nd International Conference on Data Science and Social Research, held in Milan, Italy, on February 4-5, 2019.

Data Science for Social Good

Download Data Science for Social Good PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030789853
Total Pages : 107 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Data Science for Social Good by : Massimo Lapucci

Download or read book Data Science for Social Good written by Massimo Lapucci and published by Springer Nature. This book was released on 2021-10-13 with total page 107 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of reflections by thought leaders at first-mover organizations in the exploding field of "Data Science for Social Good", meant as the application of knowledge from computer science, complex systems and computational social science to challenges such as humanitarian response, public health, sustainable development. The book provides both an overview of scientific approaches to social impact – identifying a social need, targeting an intervention, measuring impact – and the complementary perspective of funders and philanthropies that are pushing forward this new sector. This book will appeal to students and researchers in the rapidly growing field of data science for social impact, to data scientists at companies whose data could be used to generate more public value, and to decision makers at nonprofits, foundations, and agencies that are designing their own agenda around data.

Data Science in Societal Applications

Download Data Science in Societal Applications PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811951543
Total Pages : 199 pages
Book Rating : 4.8/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Data Science in Societal Applications by : Siddharth Swarup Rautaray

Download or read book Data Science in Societal Applications written by Siddharth Swarup Rautaray and published by Springer Nature. This book was released on 2022-09-15 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides an insight into the practical applications and theoretical foundation of data science. The book discusses new ways of embracing agile approaches to various facets of data science, including machine learning and artificial intelligence, data mining, data visualization, and communication. The book includes contributions from academia and industry experts detailing the shortfalls of current tools and techniques used and generating the blueprint of the new technologies. The topics covered in the book range from theoretical and foundational research, platforms, methods, applications, and tools in data science. The chapters in the book add a social, geographical, and temporal dimension to data science research. The papers included are application-oriented that prepare and use data in discovery research. This book will provide researchers and practitioners with a detailed snapshot of current progress in data science. Moreover, it will stimulate new study, research, and the development of new applications.

Trends of Data Science and Applications

Download Trends of Data Science and Applications PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9813368152
Total Pages : 341 pages
Book Rating : 4.8/5 (133 download)

DOWNLOAD NOW!


Book Synopsis Trends of Data Science and Applications by : Siddharth Swarup Rautaray

Download or read book Trends of Data Science and Applications written by Siddharth Swarup Rautaray and published by Springer Nature. This book was released on 2021-03-21 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes an extended version of selected papers presented at the 11th Industry Symposium 2021 held during January 7–10, 2021. The book covers contributions ranging from theoretical and foundation research, platforms, methods, applications, and tools in all areas. It provides theory and practices in the area of data science, which add a social, geographical, and temporal dimension to data science research. It also includes application-oriented papers that prepare and use data in discovery research. This book contains chapters from academia as well as practitioners on big data technologies, artificial intelligence, machine learning, deep learning, data representation and visualization, business analytics, healthcare analytics, bioinformatics, etc. This book is helpful for the students, practitioners, researchers as well as industry professional.

Data Analysis for Social Science

Download Data Analysis for Social Science PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691199434
Total Pages : 256 pages
Book Rating : 4.6/5 (911 download)

DOWNLOAD NOW!


Book Synopsis Data Analysis for Social Science by : Elena Llaudet

Download or read book Data Analysis for Social Science written by Elena Llaudet and published by Princeton University Press. This book was released on 2022-11-29 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Data analysis has become a necessary skill across the social sciences, and recent advancements in computing power have made knowledge of programming an essential component. Yet most data science books are intimidating and overwhelming to a non-specialist audience, including most undergraduates. This book will be a shorter, more focused and accessible version of Kosuke Imai's Quantitative Social Science book, which was published by Princeton in 2018 and has been adopted widely in graduate level courses of the same title. This book uses the same innovative approach as Quantitative Social Science , using real data and 'R' to answer a wide range of social science questions. It assumes no prior knowledge of statistics or coding. It starts with straightforward, simple data analysis and culminates with multivariate linear regression models, focusing more on the intuition of how the math works rather than the math itself. The book makes extensive use of data visualizations, diagrams, pictures, cartoons, etc., to help students understand and recall complex concepts, provides an easy to follow, step-by-step template of how to conduct data analysis from beginning to end, and will be accompanied by supplemental materials in the appendix and online for both students and instructors"--

Introduction to Data Science for Social and Policy Research

Download Introduction to Data Science for Social and Policy Research PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107117410
Total Pages : 317 pages
Book Rating : 4.1/5 (71 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Data Science for Social and Policy Research by : Jose Manuel Magallanes Reyes

Download or read book Introduction to Data Science for Social and Policy Research written by Jose Manuel Magallanes Reyes and published by Cambridge University Press. This book was released on 2017-09-21 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive guide provides a step-by-step approach to data collection, cleaning, formatting, and storage, using Python and R.

Data Science and Its Applications

Download Data Science and Its Applications PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000414000
Total Pages : 443 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Data Science and Its Applications by : Aakanksha Sharaff

Download or read book Data Science and Its Applications written by Aakanksha Sharaff and published by CRC Press. This book was released on 2021-08-18 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: The term "data" being mostly used, experimented, analyzed, and researched, "Data Science and its Applications" finds relevance in all domains of research studies including science, engineering, technology, management, mathematics, and many more in wide range of applications such as sentiment analysis, social medial analytics, signal processing, gene analysis, market analysis, healthcare, bioinformatics etc. The book on Data Science and its applications discusses about data science overview, scientific methods, data processing, extraction of meaningful information from data, and insight for developing the concept from different domains, highlighting mathematical and statistical models, operations research, computer programming, machine learning, data visualization, pattern recognition and others. The book also highlights data science implementation and evaluation of performance in several emerging applications such as information retrieval, cognitive science, healthcare, and computer vision. The data analysis covers the role of data science depicting different types of data such as text, image, biomedical signal etc. useful for a wide range of real time applications. The salient features of the book are: Overview, Challenges and Opportunities in Data Science and Real Time Applications Addressing Big Data Issues Useful Machine Learning Methods Disease Detection and Healthcare Applications utilizing Data Science Concepts and Deep Learning Applications in Stock Market, Education, Behavior Analysis, Image Captioning, Gene Analysis and Scene Text Analysis Data Optimization Due to multidisciplinary applications of data science concepts, the book is intended for wide range of readers that include Data Scientists, Big Data Analysists, Research Scholars engaged in Data Science and Machine Learning applications.

Data Science

Download Data Science PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262535432
Total Pages : 282 pages
Book Rating : 4.2/5 (625 download)

DOWNLOAD NOW!


Book Synopsis Data Science by : John D. Kelleher

Download or read book Data Science written by John D. Kelleher and published by MIT Press. This book was released on 2018-04-13 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise introduction to the emerging field of data science, explaining its evolution, relation to machine learning, current uses, data infrastructure issues, and ethical challenges. The goal of data science is to improve decision making through the analysis of data. Today data science determines the ads we see online, the books and movies that are recommended to us online, which emails are filtered into our spam folders, and even how much we pay for health insurance. This volume in the MIT Press Essential Knowledge series offers a concise introduction to the emerging field of data science, explaining its evolution, current uses, data infrastructure issues, and ethical challenges. It has never been easier for organizations to gather, store, and process data. Use of data science is driven by the rise of big data and social media, the development of high-performance computing, and the emergence of such powerful methods for data analysis and modeling as deep learning. Data science encompasses a set of principles, problem definitions, algorithms, and processes for extracting non-obvious and useful patterns from large datasets. It is closely related to the fields of data mining and machine learning, but broader in scope. This book offers a brief history of the field, introduces fundamental data concepts, and describes the stages in a data science project. It considers data infrastructure and the challenges posed by integrating data from multiple sources, introduces the basics of machine learning, and discusses how to link machine learning expertise with real-world problems. The book also reviews ethical and legal issues, developments in data regulation, and computational approaches to preserving privacy. Finally, it considers the future impact of data science and offers principles for success in data science projects.

Advanced Deep Learning Applications in Big Data Analytics

Download Advanced Deep Learning Applications in Big Data Analytics PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1799827933
Total Pages : 351 pages
Book Rating : 4.7/5 (998 download)

DOWNLOAD NOW!


Book Synopsis Advanced Deep Learning Applications in Big Data Analytics by : Bouarara, Hadj Ahmed

Download or read book Advanced Deep Learning Applications in Big Data Analytics written by Bouarara, Hadj Ahmed and published by IGI Global. This book was released on 2020-10-16 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: Interest in big data has swelled within the scholarly community as has increased attention to the internet of things (IoT). Algorithms are constructed in order to parse and analyze all this data to facilitate the exchange of information. However, big data has suffered from problems in connectivity, scalability, and privacy since its birth. The application of deep learning algorithms has helped process those challenges and remains a major issue in today’s digital world. Advanced Deep Learning Applications in Big Data Analytics is a pivotal reference source that aims to develop new architecture and applications of deep learning algorithms in big data and the IoT. Highlighting a wide range of topics such as artificial intelligence, cloud computing, and neural networks, this book is ideally designed for engineers, data analysts, data scientists, IT specialists, programmers, marketers, entrepreneurs, researchers, academicians, and students.

Big Data and Social Science

Download Big Data and Social Science PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000208591
Total Pages : 413 pages
Book Rating : 4.0/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Big Data and Social Science by : Ian Foster

Download or read book Big Data and Social Science written by Ian Foster and published by CRC Press. This book was released on 2020-11-17 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big Data and Social Science: Data Science Methods and Tools for Research and Practice, Second Edition shows how to apply data science to real-world problems, covering all stages of a data-intensive social science or policy project. Prominent leaders in the social sciences, statistics, and computer science as well as the field of data science provide a unique perspective on how to apply modern social science research principles and current analytical and computational tools. The text teaches you how to identify and collect appropriate data, apply data science methods and tools to the data, and recognize and respond to data errors, biases, and limitations. Features: Takes an accessible, hands-on approach to handling new types of data in the social sciences Presents the key data science tools in a non-intimidating way to both social and data scientists while keeping the focus on research questions and purposes Illustrates social science and data science principles through real-world problems Links computer science concepts to practical social science research Promotes good scientific practice Provides freely available workbooks with data, code, and practical programming exercises, through Binder and GitHub New to the Second Edition: Increased use of examples from different areas of social sciences New chapter on dealing with Bias and Fairness in Machine Learning models Expanded chapters focusing on Machine Learning and Text Analysis Revamped hands-on Jupyter notebooks to reinforce concepts covered in each chapter This classroom-tested book fills a major gap in graduate- and professional-level data science and social science education. It can be used to train a new generation of social data scientists to tackle real-world problems and improve the skills and competencies of applied social scientists and public policy practitioners. It empowers you to use the massive and rapidly growing amounts of available data to interpret economic and social activities in a scientific and rigorous manner.

Big Data and Social Science

Download Big Data and Social Science PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498751431
Total Pages : 493 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Big Data and Social Science by : Ian Foster

Download or read book Big Data and Social Science written by Ian Foster and published by CRC Press. This book was released on 2016-08-10 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: Both Traditional Students and Working Professionals Acquire the Skills to Analyze Social Problems. Big Data and Social Science: A Practical Guide to Methods and Tools shows how to apply data science to real-world problems in both research and the practice. The book provides practical guidance on combining methods and tools from computer science, statistics, and social science. This concrete approach is illustrated throughout using an important national problem, the quantitative study of innovation. The text draws on the expertise of prominent leaders in statistics, the social sciences, data science, and computer science to teach students how to use modern social science research principles as well as the best analytical and computational tools. It uses a real-world challenge to introduce how these tools are used to identify and capture appropriate data, apply data science models and tools to that data, and recognize and respond to data errors and limitations. For more information, including sample chapters and news, please visit the author's website.

Data Science: New Issues, Challenges and Applications

Download Data Science: New Issues, Challenges and Applications PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030392503
Total Pages : 325 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Data Science: New Issues, Challenges and Applications by : Gintautas Dzemyda

Download or read book Data Science: New Issues, Challenges and Applications written by Gintautas Dzemyda and published by Springer Nature. This book was released on 2020-02-13 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains 16 chapters by researchers working in various fields of data science. They focus on theory and applications in language technologies, optimization, computational thinking, intelligent decision support systems, decomposition of signals, model-driven development methodologies, interoperability of enterprise applications, anomaly detection in financial markets, 3D virtual reality, monitoring of environmental data, convolutional neural networks, knowledge storage, data stream classification, and security in social networking. The respective papers highlight a wealth of issues in, and applications of, data science. Modern technologies allow us to store and transfer large amounts of data quickly. They can be very diverse - images, numbers, streaming, related to human behavior and physiological parameters, etc. Whether the data is just raw numbers, crude images, or will help solve current problems and predict future developments, depends on whether we can effectively process and analyze it. Data science is evolving rapidly. However, it is still a very young field. In particular, data science is concerned with visualizations, statistics, pattern recognition, neurocomputing, image analysis, machine learning, artificial intelligence, databases and data processing, data mining, big data analytics, and knowledge discovery in databases. It also has many interfaces with optimization, block chaining, cyber-social and cyber-physical systems, Internet of Things (IoT), social computing, high-performance computing, in-memory key-value stores, cloud computing, social computing, data feeds, overlay networks, cognitive computing, crowdsource analysis, log analysis, container-based virtualization, and lifetime value modeling. Again, all of these areas are highly interrelated. In addition, data science is now expanding to new fields of application: chemical engineering, biotechnology, building energy management, materials microscopy, geographic research, learning analytics, radiology, metal design, ecosystem homeostasis investigation, and many others.

Data Science for Economics and Finance

Download Data Science for Economics and Finance PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030668916
Total Pages : 357 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Data Science for Economics and Finance by : Sergio Consoli

Download or read book Data Science for Economics and Finance written by Sergio Consoli and published by Springer Nature. This book was released on 2021 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book covers the use of data science, including advanced machine learning, big data analytics, Semantic Web technologies, natural language processing, social media analysis, time series analysis, among others, for applications in economics and finance. In addition, it shows some successful applications of advanced data science solutions used to extract new knowledge from data in order to improve economic forecasting models. The book starts with an introduction on the use of data science technologies in economics and finance and is followed by thirteen chapters showing success stories of the application of specific data science methodologies, touching on particular topics related to novel big data sources and technologies for economic analysis (e.g. social media and news); big data models leveraging on supervised/unsupervised (deep) machine learning; natural language processing to build economic and financial indicators; and forecasting and nowcasting of economic variables through time series analysis. This book is relevant to all stakeholders involved in digital and data-intensive research in economics and finance, helping them to understand the main opportunities and challenges, become familiar with the latest methodological findings, and learn how to use and evaluate the performances of novel tools and frameworks. It primarily targets data scientists and business analysts exploiting data science technologies, and it will also be a useful resource to research students in disciplines and courses related to these topics. Overall, readers will learn modern and effective data science solutions to create tangible innovations for economic and financial applications.

Data Science Applied to Sustainability Analysis

Download Data Science Applied to Sustainability Analysis PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0128179775
Total Pages : 312 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Data Science Applied to Sustainability Analysis by : Jennifer Dunn

Download or read book Data Science Applied to Sustainability Analysis written by Jennifer Dunn and published by Elsevier. This book was released on 2021-05-11 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Science Applied to Sustainability Analysis focuses on the methodological considerations associated with applying this tool in analysis techniques such as lifecycle assessment and materials flow analysis. As sustainability analysts need examples of applications of big data techniques that are defensible and practical in sustainability analyses and that yield actionable results that can inform policy development, corporate supply chain management strategy, or non-governmental organization positions, this book helps answer underlying questions. In addition, it addresses the need of data science experts looking for routes to apply their skills and knowledge to domain areas. - Presents data sources that are available for application in sustainability analyses, such as market information, environmental monitoring data, social media data and satellite imagery - Includes considerations sustainability analysts must evaluate when applying big data - Features case studies illustrating the application of data science in sustainability analyses