Data Science from Scratch

Download Data Science from Scratch PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491904399
Total Pages : 336 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Data Science from Scratch by : Joel Grus

Download or read book Data Science from Scratch written by Joel Grus and published by "O'Reilly Media, Inc.". This book was released on 2015-04-14 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases

A Hands-On Introduction to Data Science

Download A Hands-On Introduction to Data Science PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108472443
Total Pages : 459 pages
Book Rating : 4.1/5 (84 download)

DOWNLOAD NOW!


Book Synopsis A Hands-On Introduction to Data Science by : Chirag Shah

Download or read book A Hands-On Introduction to Data Science written by Chirag Shah and published by Cambridge University Press. This book was released on 2020-04-02 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory textbook offering a low barrier entry to data science; the hands-on approach will appeal to students from a range of disciplines.

Doing Data Science

Download Doing Data Science PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 144936389X
Total Pages : 320 pages
Book Rating : 4.4/5 (493 download)

DOWNLOAD NOW!


Book Synopsis Doing Data Science by : Cathy O'Neil

Download or read book Doing Data Science written by Cathy O'Neil and published by "O'Reilly Media, Inc.". This book was released on 2013-10-09 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now that people are aware that data can make the difference in an election or a business model, data science as an occupation is gaining ground. But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know. In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science. Topics include: Statistical inference, exploratory data analysis, and the data science process Algorithms Spam filters, Naive Bayes, and data wrangling Logistic regression Financial modeling Recommendation engines and causality Data visualization Social networks and data journalism Data engineering, MapReduce, Pregel, and Hadoop Doing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.

Data Science

Download Data Science PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262535432
Total Pages : 282 pages
Book Rating : 4.2/5 (625 download)

DOWNLOAD NOW!


Book Synopsis Data Science by : John D. Kelleher

Download or read book Data Science written by John D. Kelleher and published by MIT Press. This book was released on 2018-04-13 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise introduction to the emerging field of data science, explaining its evolution, relation to machine learning, current uses, data infrastructure issues, and ethical challenges. The goal of data science is to improve decision making through the analysis of data. Today data science determines the ads we see online, the books and movies that are recommended to us online, which emails are filtered into our spam folders, and even how much we pay for health insurance. This volume in the MIT Press Essential Knowledge series offers a concise introduction to the emerging field of data science, explaining its evolution, current uses, data infrastructure issues, and ethical challenges. It has never been easier for organizations to gather, store, and process data. Use of data science is driven by the rise of big data and social media, the development of high-performance computing, and the emergence of such powerful methods for data analysis and modeling as deep learning. Data science encompasses a set of principles, problem definitions, algorithms, and processes for extracting non-obvious and useful patterns from large datasets. It is closely related to the fields of data mining and machine learning, but broader in scope. This book offers a brief history of the field, introduces fundamental data concepts, and describes the stages in a data science project. It considers data infrastructure and the challenges posed by integrating data from multiple sources, introduces the basics of machine learning, and discusses how to link machine learning expertise with real-world problems. The book also reviews ethical and legal issues, developments in data regulation, and computational approaches to preserving privacy. Finally, it considers the future impact of data science and offers principles for success in data science projects.

Data Analysis from Scratch with Python

Download Data Analysis from Scratch with Python PDF Online Free

Author :
Publisher : Createspace Independent Publishing Platform
ISBN 13 : 9781725678095
Total Pages : 152 pages
Book Rating : 4.6/5 (78 download)

DOWNLOAD NOW!


Book Synopsis Data Analysis from Scratch with Python by : Peters Morgan

Download or read book Data Analysis from Scratch with Python written by Peters Morgan and published by Createspace Independent Publishing Platform. This book was released on 2018-08-14 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: ******Free eBook for customers who purchase the print book from Amazon****** Are you thinking of becoming a data analyst using Python? If you are looking for a complete guide to data analysis using Python language and its library that will help you to become an effective data scientist, this book is for you. From AI Sciences Publisher Our books may be the best one for beginners; it's a step-by-step guide for any person who wants to start learning Artificial Intelligence and Data Science from scratch. It will help you in preparing a solid foundation and learn any other high-level courses. To get the most out of the concepts that would be covered, readers are advised to adopt hands on approach, which would lead to better mental representations. Step By Step Guide and Visual Illustrations and Examples The Book give complete instructions for manipulating, processing, cleaning, modeling and crunching datasets in Python. This is a hands-on guide with practical case studies of data analysis problems effectively. You will learn pandas, NumPy, IPython, and Jupiter in the Process. Target Users This book is a practical introduction to data science tools in Python. It is ideal for analyst's beginners to Python and for Python programmers new to data science and computer science. Instead of tough math formulas, this book contains several graphs and images. What's Inside This Book? Introduction Why Choose Python for Data Science & Machine Learning Prerequisites & Reminders Python Quick Review Overview & Objectives A Quick Example Getting & Processing Data Data Visualization Supervised & Unsupervised Learning Regression Simple Linear Regression Multiple Linear Regression Decision Tree Random Forest Classification Logistic Regression K-Nearest Neighbors Decision Tree Classification Random Forest Classification Clustering Goals & Uses of Clustering K-Means Clustering Anomaly Detection Association Rule Learning Explanation Apriori Reinforcement Learning What is Reinforcement Learning Comparison with Supervised & Unsupervised Learning Applying Reinforcement Learning Neural Networks An Idea of How the Brain Works Potential & Constraints Here's an Example Natural Language Processing Analyzing Words & Sentiments Using NLTK Model Selection & Improving Performance Sources & References Frequently Asked Questions Q: Is this book for me and do I need programming experience? A: if you want to smash Python for data analysis, this book is for you. Little programming experience is required. If you already wrote a few lines of code and recognize basic programming statements, you'll be OK. Q: Does this book include everything I need to become a data science expert? A: Unfortunately, no. This book is designed for readers taking their first steps in data analysis and further learning will be required beyond this book to master all aspects. Q: Can I have a refund if this book is not fitted for me? A: Yes, Amazon refund you if you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform. We will also be happy to help you if you send us an email at [email protected]. AI Sciences Company offers you a free eBooks at http: //aisciences.net/free/

Python Data Science Handbook

Download Python Data Science Handbook PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491912138
Total Pages : 609 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Python Data Science Handbook by : Jake VanderPlas

Download or read book Python Data Science Handbook written by Jake VanderPlas and published by "O'Reilly Media, Inc.". This book was released on 2016-11-21 with total page 609 pages. Available in PDF, EPUB and Kindle. Book excerpt: For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms

Getting Started with Streamlit for Data Science

Download Getting Started with Streamlit for Data Science PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1800563205
Total Pages : 282 pages
Book Rating : 4.8/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Getting Started with Streamlit for Data Science by : Tyler Richards

Download or read book Getting Started with Streamlit for Data Science written by Tyler Richards and published by Packt Publishing Ltd. This book was released on 2021-08-20 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Create, deploy, and test your Python applications, analyses, and models with ease using Streamlit Key Features Learn how to showcase machine learning models in a Streamlit application effectively and efficiently Become an expert Streamlit creator by getting hands-on with complex application creation Discover how Streamlit enables you to create and deploy apps effortlessly Book DescriptionStreamlit shortens the development time for the creation of data-focused web applications, allowing data scientists to create web app prototypes using Python in hours instead of days. Getting Started with Streamlit for Data Science takes a hands-on approach to helping you learn the tips and tricks that will have you up and running with Streamlit in no time. You'll start with the fundamentals of Streamlit by creating a basic app and gradually build on the foundation by producing high-quality graphics with data visualization and testing machine learning models. As you advance through the chapters, you’ll walk through practical examples of both personal data projects and work-related data-focused web applications, and get to grips with more challenging topics such as using Streamlit Components, beautifying your apps, and quick deployment of your new apps. By the end of this book, you’ll be able to create dynamic web apps in Streamlit quickly and effortlessly using the power of Python.What you will learn Set up your first development environment and create a basic Streamlit app from scratch Explore methods for uploading, downloading, and manipulating data in Streamlit apps Create dynamic visualizations in Streamlit using built-in and imported Python libraries Discover strategies for creating and deploying machine learning models in Streamlit Use Streamlit sharing for one-click deployment Beautify Streamlit apps using themes, Streamlit Components, and Streamlit sidebar Implement best practices for prototyping your data science work with Streamlit Who this book is for This book is for data scientists and machine learning enthusiasts who want to create web apps using Streamlit. Whether you’re a junior data scientist looking to deploy your first machine learning project in Python to improve your resume or a senior data scientist who wants to use Streamlit to make convincing and dynamic data analyses, this book will help you get there! Prior knowledge of Python programming will assist with understanding the concepts covered.

Data Science for Beginners

Download Data Science for Beginners PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 532 pages
Book Rating : 4.6/5 (458 download)

DOWNLOAD NOW!


Book Synopsis Data Science for Beginners by : Andrew Park

Download or read book Data Science for Beginners written by Andrew Park and published by . This book was released on 2020-05-14 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master the world of Python, Data Analysis, Machine Learning and Data Science with this comprehensive 4-in-1 bundle. Are you interested in becoming a Python geek? Or do you want to learn more about the fascinating world of Data Science, and what it can do for you? Then keep reading. Created with the beginner in mind, this powerful bundle delves into the fundamentals behind Python and Data Science, from basic code and concepts to complex Neural Networks and data manipulation. Inside, you'll discover everything you need to know to get started with Python and Data Science, and begin your journey to success! In book one, PYTHON FOR BEGINNERS, you'll learn: How to install Python What are the different Python Data Types, Variables and Basic Operators Data Structures, Functions and Files Conditional and Loops in Python Object-Oriented Programming (OOP), Inheritance and Polymorphism Essential Programming Tools and Exception Handling An application to Decision Trees And Much More! In book two, PYTHON FOR DATA ANALYSIS, you will: What Data Analysis is all about and why businesses are investing in this sector The 5 steps of a Data Analysis Neural Network The 7 Python libraries that make Python one of the best choices for Data Analysis How Data Visualization and Matplotlib can help you to understand the data you are working with. Some of the main industries that are using data to improve their business with 14 real-world applications And Much More! In book three, PYTHON MACHINE LEARNING, you'll discover: What is Machine Learning and how it is applied in real-world situations Understanding the differences between Machine Learning, Deep Learning, and Artificial Intelligence Machine learning training models, Regression techniques and Linear Regression in Python How to use Lists and Modules in Python The 12 essential libraries for Machine Learning in Python Artificial Neural Networks And Much More! And in book four, PYTHON DATA SCIENCE, you will: What Data Science is all about and why so many companies are using it to give them a competitive edge. Why Python and how to use it to implement Data Science The main Data Structures & Object-Oriented Programming, Functions and Modules in Python with practical codes and exercises The 7 most important algorithms and models in Data Science Data Aggregation, Group Operations, Databases and Data in the Cloud 9 important Data Mining techniques in Data Science And So Much More! Whether you're a complete beginner or a programmer looking to improve his skillset, Data Science for Beginners is your all-in-one solution to mastering the world of Python and Data Science. Would you like to know more?Scroll Up and Click the BUY NOW Button to Get Your Copy!

Deep Learning from Scratch

Download Deep Learning from Scratch PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 1492041386
Total Pages : 253 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning from Scratch by : Seth Weidman

Download or read book Deep Learning from Scratch written by Seth Weidman and published by O'Reilly Media. This book was released on 2019-09-09 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the resurgence of neural networks in the 2010s, deep learning has become essential for machine learning practitioners and even many software engineers. This book provides a comprehensive introduction for data scientists and software engineers with machine learning experience. You’ll start with deep learning basics and move quickly to the details of important advanced architectures, implementing everything from scratch along the way. Author Seth Weidman shows you how neural networks work using a first principles approach. You’ll learn how to apply multilayer neural networks, convolutional neural networks, and recurrent neural networks from the ground up. With a thorough understanding of how neural networks work mathematically, computationally, and conceptually, you’ll be set up for success on all future deep learning projects. This book provides: Extremely clear and thorough mental models—accompanied by working code examples and mathematical explanations—for understanding neural networks Methods for implementing multilayer neural networks from scratch, using an easy-to-understand object-oriented framework Working implementations and clear-cut explanations of convolutional and recurrent neural networks Implementation of these neural network concepts using the popular PyTorch framework

Data Science For Dummies

Download Data Science For Dummies PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119811619
Total Pages : 436 pages
Book Rating : 4.1/5 (198 download)

DOWNLOAD NOW!


Book Synopsis Data Science For Dummies by : Lillian Pierson

Download or read book Data Science For Dummies written by Lillian Pierson and published by John Wiley & Sons. This book was released on 2021-08-20 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monetize your company’s data and data science expertise without spending a fortune on hiring independent strategy consultants to help What if there was one simple, clear process for ensuring that all your company’s data science projects achieve a high a return on investment? What if you could validate your ideas for future data science projects, and select the one idea that’s most prime for achieving profitability while also moving your company closer to its business vision? There is. Industry-acclaimed data science consultant, Lillian Pierson, shares her proprietary STAR Framework – A simple, proven process for leading profit-forming data science projects. Not sure what data science is yet? Don’t worry! Parts 1 and 2 of Data Science For Dummies will get all the bases covered for you. And if you’re already a data science expert? Then you really won’t want to miss the data science strategy and data monetization gems that are shared in Part 3 onward throughout this book. Data Science For Dummies demonstrates: The only process you’ll ever need to lead profitable data science projects Secret, reverse-engineered data monetization tactics that no one’s talking about The shocking truth about how simple natural language processing can be How to beat the crowd of data professionals by cultivating your own unique blend of data science expertise Whether you’re new to the data science field or already a decade in, you’re sure to learn something new and incredibly valuable from Data Science For Dummies. Discover how to generate massive business wins from your company’s data by picking up your copy today.

Data Science Projects with Python

Download Data Science Projects with Python PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1800569440
Total Pages : 433 pages
Book Rating : 4.8/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Data Science Projects with Python by : Stephen Klosterman

Download or read book Data Science Projects with Python written by Stephen Klosterman and published by Packt Publishing Ltd. This book was released on 2021-07-29 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gain hands-on experience of Python programming with industry-standard machine learning techniques using pandas, scikit-learn, and XGBoost Key FeaturesThink critically about data and use it to form and test a hypothesisChoose an appropriate machine learning model and train it on your dataCommunicate data-driven insights with confidence and clarityBook Description If data is the new oil, then machine learning is the drill. As companies gain access to ever-increasing quantities of raw data, the ability to deliver state-of-the-art predictive models that support business decision-making becomes more and more valuable. In this book, you'll work on an end-to-end project based around a realistic data set and split up into bite-sized practical exercises. This creates a case-study approach that simulates the working conditions you'll experience in real-world data science projects. You'll learn how to use key Python packages, including pandas, Matplotlib, and scikit-learn, and master the process of data exploration and data processing, before moving on to fitting, evaluating, and tuning algorithms such as regularized logistic regression and random forest. Now in its second edition, this book will take you through the end-to-end process of exploring data and delivering machine learning models. Updated for 2021, this edition includes brand new content on XGBoost, SHAP values, algorithmic fairness, and the ethical concerns of deploying a model in the real world. By the end of this data science book, you'll have the skills, understanding, and confidence to build your own machine learning models and gain insights from real data. What you will learnLoad, explore, and process data using the pandas Python packageUse Matplotlib to create compelling data visualizationsImplement predictive machine learning models with scikit-learnUse lasso and ridge regression to reduce model overfittingEvaluate random forest and logistic regression model performanceDeliver business insights by presenting clear, convincing conclusionsWho this book is for Data Science Projects with Python – Second Edition is for anyone who wants to get started with data science and machine learning. If you're keen to advance your career by using data analysis and predictive modeling to generate business insights, then this book is the perfect place to begin. To quickly grasp the concepts covered, it is recommended that you have basic experience of programming with Python or another similar language, and a general interest in statistics.

Data Science at the Command Line

Download Data Science at the Command Line PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491947802
Total Pages : 207 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Data Science at the Command Line by : Jeroen Janssens

Download or read book Data Science at the Command Line written by Jeroen Janssens and published by "O'Reilly Media, Inc.". This book was released on 2014-09-25 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: This hands-on guide demonstrates how the flexibility of the command line can help you become a more efficient and productive data scientist. You’ll learn how to combine small, yet powerful, command-line tools to quickly obtain, scrub, explore, and model your data. To get you started—whether you’re on Windows, OS X, or Linux—author Jeroen Janssens introduces the Data Science Toolbox, an easy-to-install virtual environment packed with over 80 command-line tools. Discover why the command line is an agile, scalable, and extensible technology. Even if you’re already comfortable processing data with, say, Python or R, you’ll greatly improve your data science workflow by also leveraging the power of the command line. Obtain data from websites, APIs, databases, and spreadsheets Perform scrub operations on plain text, CSV, HTML/XML, and JSON Explore data, compute descriptive statistics, and create visualizations Manage your data science workflow using Drake Create reusable tools from one-liners and existing Python or R code Parallelize and distribute data-intensive pipelines using GNU Parallel Model data with dimensionality reduction, clustering, regression, and classification algorithms

Introduction to Data Science

Download Introduction to Data Science PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000708039
Total Pages : 836 pages
Book Rating : 4.0/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Data Science by : Rafael A. Irizarry

Download or read book Introduction to Data Science written by Rafael A. Irizarry and published by CRC Press. This book was released on 2019-11-20 with total page 836 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert.

Machine Learning Algorithms From Scratch with Python

Download Machine Learning Algorithms From Scratch with Python PDF Online Free

Author :
Publisher : Machine Learning Mastery
ISBN 13 :
Total Pages : 237 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Algorithms From Scratch with Python by : Jason Brownlee

Download or read book Machine Learning Algorithms From Scratch with Python written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2016-11-16 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: You must understand algorithms to get good at machine learning. The problem is that they are only ever explained using Math. No longer. In this Ebook, finally cut through the math and learn exactly how machine learning algorithms work. Using clear explanations, simple pure Python code (no libraries!) and step-by-step tutorials you will discover how to load and prepare data, evaluate model skill, and implement a suite of linear, nonlinear and ensemble machine learning algorithms from scratch.

Data Science for Business

Download Data Science for Business PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 144937428X
Total Pages : 506 pages
Book Rating : 4.4/5 (493 download)

DOWNLOAD NOW!


Book Synopsis Data Science for Business by : Foster Provost

Download or read book Data Science for Business written by Foster Provost and published by "O'Reilly Media, Inc.". This book was released on 2013-07-27 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates

Data Science on AWS

Download Data Science on AWS PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492079367
Total Pages : 524 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Data Science on AWS by : Chris Fregly

Download or read book Data Science on AWS written by Chris Fregly and published by "O'Reilly Media, Inc.". This book was released on 2021-04-07 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: With this practical book, AI and machine learning practitioners will learn how to successfully build and deploy data science projects on Amazon Web Services. The Amazon AI and machine learning stack unifies data science, data engineering, and application development to help level upyour skills. This guide shows you how to build and run pipelines in the cloud, then integrate the results into applications in minutes instead of days. Throughout the book, authors Chris Fregly and Antje Barth demonstrate how to reduce cost and improve performance. Apply the Amazon AI and ML stack to real-world use cases for natural language processing, computer vision, fraud detection, conversational devices, and more Use automated machine learning to implement a specific subset of use cases with SageMaker Autopilot Dive deep into the complete model development lifecycle for a BERT-based NLP use case including data ingestion, analysis, model training, and deployment Tie everything together into a repeatable machine learning operations pipeline Explore real-time ML, anomaly detection, and streaming analytics on data streams with Amazon Kinesis and Managed Streaming for Apache Kafka Learn security best practices for data science projects and workflows including identity and access management, authentication, authorization, and more

Foundations of Data Science

Download Foundations of Data Science PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108617360
Total Pages : 433 pages
Book Rating : 4.1/5 (86 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Data Science by : Avrim Blum

Download or read book Foundations of Data Science written by Avrim Blum and published by Cambridge University Press. This book was released on 2020-01-23 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.