Python Data Science Essentials

Download Python Data Science Essentials PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1786462834
Total Pages : 373 pages
Book Rating : 4.7/5 (864 download)

DOWNLOAD NOW!


Book Synopsis Python Data Science Essentials by : Alberto Boschetti

Download or read book Python Data Science Essentials written by Alberto Boschetti and published by Packt Publishing Ltd. This book was released on 2016-10-28 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: Become an efficient data science practitioner by understanding Python's key concepts About This Book Quickly get familiar with data science using Python 3.5 Save time (and effort) with all the essential tools explained Create effective data science projects and avoid common pitfalls with the help of examples and hints dictated by experience Who This Book Is For If you are an aspiring data scientist and you have at least a working knowledge of data analysis and Python, this book will get you started in data science. Data analysts with experience of R or MATLAB will also find the book to be a comprehensive reference to enhance their data manipulation and machine learning skills. What You Will Learn Set up your data science toolbox using a Python scientific environment on Windows, Mac, and Linux Get data ready for your data science project Manipulate, fix, and explore data in order to solve data science problems Set up an experimental pipeline to test your data science hypotheses Choose the most effective and scalable learning algorithm for your data science tasks Optimize your machine learning models to get the best performance Explore and cluster graphs, taking advantage of interconnections and links in your data In Detail Fully expanded and upgraded, the second edition of Python Data Science Essentials takes you through all you need to know to suceed in data science using Python. Get modern insight into the core of Python data, including the latest versions of Jupyter notebooks, NumPy, pandas and scikit-learn. Look beyond the fundamentals with beautiful data visualizations with Seaborn and ggplot, web development with Bottle, and even the new frontiers of deep learning with Theano and TensorFlow. Dive into building your essential Python 3.5 data science toolbox, using a single-source approach that will allow to to work with Python 2.7 as well. Get to grips fast with data munging and preprocessing, and all the techniques you need to load, analyse, and process your data. Finally, get a complete overview of principal machine learning algorithms, graph analysis techniques, and all the visualization and deployment instruments that make it easier to present your results to an audience of both data science experts and business users. Style and approach The book is structured as a data science project. You will always benefit from clear code and simplified examples to help you understand the underlying mechanics and real-world datasets.

Python Data Science Handbook

Download Python Data Science Handbook PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491912138
Total Pages : 609 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Python Data Science Handbook by : Jake VanderPlas

Download or read book Python Data Science Handbook written by Jake VanderPlas and published by "O'Reilly Media, Inc.". This book was released on 2016-11-21 with total page 609 pages. Available in PDF, EPUB and Kindle. Book excerpt: For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms

Python for Data Science For Dummies

Download Python for Data Science For Dummies PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118843983
Total Pages : 432 pages
Book Rating : 4.1/5 (188 download)

DOWNLOAD NOW!


Book Synopsis Python for Data Science For Dummies by : John Paul Mueller

Download or read book Python for Data Science For Dummies written by John Paul Mueller and published by John Wiley & Sons. This book was released on 2015-06-23 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unleash the power of Python for your data analysis projects with For Dummies! Python is the preferred programming language for data scientists and combines the best features of Matlab, Mathematica, and R into libraries specific to data analysis and visualization. Python for Data Science For Dummies shows you how to take advantage of Python programming to acquire, organize, process, and analyze large amounts of information and use basic statistics concepts to identify trends and patterns. You’ll get familiar with the Python development environment, manipulate data, design compelling visualizations, and solve scientific computing challenges as you work your way through this user-friendly guide. Covers the fundamentals of Python data analysis programming and statistics to help you build a solid foundation in data science concepts like probability, random distributions, hypothesis testing, and regression models Explains objects, functions, modules, and libraries and their role in data analysis Walks you through some of the most widely-used libraries, including NumPy, SciPy, BeautifulSoup, Pandas, and MatPlobLib Whether you’re new to data analysis or just new to Python, Python for Data Science For Dummies is your practical guide to getting a grip on data overload and doing interesting things with the oodles of information you uncover.

Practical Statistics for Data Scientists

Download Practical Statistics for Data Scientists PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491952911
Total Pages : 322 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Practical Statistics for Data Scientists by : Peter Bruce

Download or read book Practical Statistics for Data Scientists written by Peter Bruce and published by "O'Reilly Media, Inc.". This book was released on 2017-05-10 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data

Data Science Projects with Python

Download Data Science Projects with Python PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1800569440
Total Pages : 433 pages
Book Rating : 4.8/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Data Science Projects with Python by : Stephen Klosterman

Download or read book Data Science Projects with Python written by Stephen Klosterman and published by Packt Publishing Ltd. This book was released on 2021-07-29 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gain hands-on experience of Python programming with industry-standard machine learning techniques using pandas, scikit-learn, and XGBoost Key FeaturesThink critically about data and use it to form and test a hypothesisChoose an appropriate machine learning model and train it on your dataCommunicate data-driven insights with confidence and clarityBook Description If data is the new oil, then machine learning is the drill. As companies gain access to ever-increasing quantities of raw data, the ability to deliver state-of-the-art predictive models that support business decision-making becomes more and more valuable. In this book, you'll work on an end-to-end project based around a realistic data set and split up into bite-sized practical exercises. This creates a case-study approach that simulates the working conditions you'll experience in real-world data science projects. You'll learn how to use key Python packages, including pandas, Matplotlib, and scikit-learn, and master the process of data exploration and data processing, before moving on to fitting, evaluating, and tuning algorithms such as regularized logistic regression and random forest. Now in its second edition, this book will take you through the end-to-end process of exploring data and delivering machine learning models. Updated for 2021, this edition includes brand new content on XGBoost, SHAP values, algorithmic fairness, and the ethical concerns of deploying a model in the real world. By the end of this data science book, you'll have the skills, understanding, and confidence to build your own machine learning models and gain insights from real data. What you will learnLoad, explore, and process data using the pandas Python packageUse Matplotlib to create compelling data visualizationsImplement predictive machine learning models with scikit-learnUse lasso and ridge regression to reduce model overfittingEvaluate random forest and logistic regression model performanceDeliver business insights by presenting clear, convincing conclusionsWho this book is for Data Science Projects with Python – Second Edition is for anyone who wants to get started with data science and machine learning. If you're keen to advance your career by using data analysis and predictive modeling to generate business insights, then this book is the perfect place to begin. To quickly grasp the concepts covered, it is recommended that you have basic experience of programming with Python or another similar language, and a general interest in statistics.

Python for Data Analysis

Download Python for Data Analysis PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491957611
Total Pages : 553 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Python for Data Analysis by : Wes McKinney

Download or read book Python for Data Analysis written by Wes McKinney and published by "O'Reilly Media, Inc.". This book was released on 2017-09-25 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples

Data Science from Scratch

Download Data Science from Scratch PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491904399
Total Pages : 336 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Data Science from Scratch by : Joel Grus

Download or read book Data Science from Scratch written by Joel Grus and published by "O'Reilly Media, Inc.". This book was released on 2015-04-14 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases

Introducing Data Science

Download Introducing Data Science PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1638352496
Total Pages : 475 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Introducing Data Science by : Davy Cielen

Download or read book Introducing Data Science written by Davy Cielen and published by Simon and Schuster. This book was released on 2016-05-02 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Introducing Data Science teaches you how to accomplish the fundamental tasks that occupy data scientists. Using the Python language and common Python libraries, you'll experience firsthand the challenges of dealing with data at scale and gain a solid foundation in data science. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Many companies need developers with data science skills to work on projects ranging from social media marketing to machine learning. Discovering what you need to learn to begin a career as a data scientist can seem bewildering. This book is designed to help you get started. About the Book Introducing Data ScienceIntroducing Data Science explains vital data science concepts and teaches you how to accomplish the fundamental tasks that occupy data scientists. You’ll explore data visualization, graph databases, the use of NoSQL, and the data science process. You’ll use the Python language and common Python libraries as you experience firsthand the challenges of dealing with data at scale. Discover how Python allows you to gain insights from data sets so big that they need to be stored on multiple machines, or from data moving so quickly that no single machine can handle it. This book gives you hands-on experience with the most popular Python data science libraries, Scikit-learn and StatsModels. After reading this book, you’ll have the solid foundation you need to start a career in data science. What’s Inside Handling large data Introduction to machine learning Using Python to work with data Writing data science algorithms About the Reader This book assumes you're comfortable reading code in Python or a similar language, such as C, Ruby, or JavaScript. No prior experience with data science is required. About the Authors Davy Cielen, Arno D. B. Meysman, and Mohamed Ali are the founders and managing partners of Optimately and Maiton, where they focus on developing data science projects and solutions in various sectors. Table of Contents Data science in a big data world The data science process Machine learning Handling large data on a single computer First steps in big data Join the NoSQL movement The rise of graph databases Text mining and text analytics Data visualization to the end user

The Essentials of Data Science: Knowledge Discovery Using R

Download The Essentials of Data Science: Knowledge Discovery Using R PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351647490
Total Pages : 295 pages
Book Rating : 4.3/5 (516 download)

DOWNLOAD NOW!


Book Synopsis The Essentials of Data Science: Knowledge Discovery Using R by : Graham J. Williams

Download or read book The Essentials of Data Science: Knowledge Discovery Using R written by Graham J. Williams and published by CRC Press. This book was released on 2017-07-28 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Essentials of Data Science: Knowledge Discovery Using R presents the concepts of data science through a hands-on approach using free and open source software. It systematically drives an accessible journey through data analysis and machine learning to discover and share knowledge from data. Building on over thirty years’ experience in teaching and practising data science, the author encourages a programming-by-example approach to ensure students and practitioners attune to the practise of data science while building their data skills. Proven frameworks are provided as reusable templates. Real world case studies then provide insight for the data scientist to swiftly adapt the templates to new tasks and datasets. The book begins by introducing data science. It then reviews R’s capabilities for analysing data by writing computer programs. These programs are developed and explained step by step. From analysing and visualising data, the framework moves on to tried and tested machine learning techniques for predictive modelling and knowledge discovery. Literate programming and a consistent style are a focus throughout the book.

Data Science Using Python and R

Download Data Science Using Python and R PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119526817
Total Pages : 256 pages
Book Rating : 4.1/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Data Science Using Python and R by : Chantal D. Larose

Download or read book Data Science Using Python and R written by Chantal D. Larose and published by John Wiley & Sons. This book was released on 2019-04-09 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn data science by doing data science! Data Science Using Python and R will get you plugged into the world’s two most widespread open-source platforms for data science: Python and R. Data science is hot. Bloomberg called data scientist “the hottest job in America.” Python and R are the top two open-source data science tools in the world. In Data Science Using Python and R, you will learn step-by-step how to produce hands-on solutions to real-world business problems, using state-of-the-art techniques. Data Science Using Python and R is written for the general reader with no previous analytics or programming experience. An entire chapter is dedicated to learning the basics of Python and R. Then, each chapter presents step-by-step instructions and walkthroughs for solving data science problems using Python and R. Those with analytics experience will appreciate having a one-stop shop for learning how to do data science using Python and R. Topics covered include data preparation, exploratory data analysis, preparing to model the data, decision trees, model evaluation, misclassification costs, naïve Bayes classification, neural networks, clustering, regression modeling, dimension reduction, and association rules mining. Further, exciting new topics such as random forests and general linear models are also included. The book emphasizes data-driven error costs to enhance profitability, which avoids the common pitfalls that may cost a company millions of dollars. Data Science Using Python and R provides exercises at the end of every chapter, totaling over 500 exercises in the book. Readers will therefore have plenty of opportunity to test their newfound data science skills and expertise. In the Hands-on Analysis exercises, readers are challenged to solve interesting business problems using real-world data sets.

Mastering Python for Data Science

Download Mastering Python for Data Science PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1784392626
Total Pages : 294 pages
Book Rating : 4.7/5 (843 download)

DOWNLOAD NOW!


Book Synopsis Mastering Python for Data Science by : Samir Madhavan

Download or read book Mastering Python for Data Science written by Samir Madhavan and published by Packt Publishing Ltd. This book was released on 2015-08-31 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore the world of data science through Python and learn how to make sense of data About This Book Master data science methods using Python and its libraries Create data visualizations and mine for patterns Advanced techniques for the four fundamentals of Data Science with Python - data mining, data analysis, data visualization, and machine learning Who This Book Is For If you are a Python developer who wants to master the world of data science then this book is for you. Some knowledge of data science is assumed. What You Will Learn Manage data and perform linear algebra in Python Derive inferences from the analysis by performing inferential statistics Solve data science problems in Python Create high-end visualizations using Python Evaluate and apply the linear regression technique to estimate the relationships among variables. Build recommendation engines with the various collaborative filtering algorithms Apply the ensemble methods to improve your predictions Work with big data technologies to handle data at scale In Detail Data science is a relatively new knowledge domain which is used by various organizations to make data driven decisions. Data scientists have to wear various hats to work with data and to derive value from it. The Python programming language, beyond having conquered the scientific community in the last decade, is now an indispensable tool for the data science practitioner and a must-know tool for every aspiring data scientist. Using Python will offer you a fast, reliable, cross-platform, and mature environment for data analysis, machine learning, and algorithmic problem solving. This comprehensive guide helps you move beyond the hype and transcend the theory by providing you with a hands-on, advanced study of data science. Beginning with the essentials of Python in data science, you will learn to manage data and perform linear algebra in Python. You will move on to deriving inferences from the analysis by performing inferential statistics, and mining data to reveal hidden patterns and trends. You will use the matplot library to create high-end visualizations in Python and uncover the fundamentals of machine learning. Next, you will apply the linear regression technique and also learn to apply the logistic regression technique to your applications, before creating recommendation engines with various collaborative filtering algorithms and improving your predictions by applying the ensemble methods. Finally, you will perform K-means clustering, along with an analysis of unstructured data with different text mining techniques and leveraging the power of Python in big data analytics. Style and approach This book is an easy-to-follow, comprehensive guide on data science using Python. The topics covered in the book can all be used in real world scenarios.

Python for Data Science

Download Python for Data Science PDF Online Free

Author :
Publisher :
ISBN 13 : 9781801547994
Total Pages : 266 pages
Book Rating : 4.5/5 (479 download)

DOWNLOAD NOW!


Book Synopsis Python for Data Science by : Erick Thompson

Download or read book Python for Data Science written by Erick Thompson and published by . This book was released on 2020-10-30 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Python and R for the Modern Data Scientist

Download Python and R for the Modern Data Scientist PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492093378
Total Pages : 199 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Python and R for the Modern Data Scientist by : Rick J. Scavetta

Download or read book Python and R for the Modern Data Scientist written by Rick J. Scavetta and published by "O'Reilly Media, Inc.". This book was released on 2021-06-22 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: Success in data science depends on the flexible and appropriate use of tools. That includes Python and R, two of the foundational programming languages in the field. This book guides data scientists from the Python and R communities along the path to becoming bilingual. By recognizing the strengths of both languages, you'll discover new ways to accomplish data science tasks and expand your skill set. Authors Rick Scavetta and Boyan Angelov explain the parallel structures of these languages and highlight where each one excels, whether it's their linguistic features or the powers of their open source ecosystems. You'll learn how to use Python and R together in real-world settings and broaden your job opportunities as a bilingual data scientist. Learn Python and R from the perspective of your current language Understand the strengths and weaknesses of each language Identify use cases where one language is better suited than the other Understand the modern open source ecosystem available for both, including packages, frameworks, and workflows Learn how to integrate R and Python in a single workflow Follow a case study that demonstrates ways to use these languages together

Data Science Projects with Python

Download Data Science Projects with Python PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 183855260X
Total Pages : 374 pages
Book Rating : 4.8/5 (385 download)

DOWNLOAD NOW!


Book Synopsis Data Science Projects with Python by : Stephen Klosterman

Download or read book Data Science Projects with Python written by Stephen Klosterman and published by Packt Publishing Ltd. This book was released on 2019-04-30 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gain hands-on experience with industry-standard data analysis and machine learning tools in Python Key FeaturesTackle data science problems by identifying the problem to be solvedIllustrate patterns in data using appropriate visualizationsImplement suitable machine learning algorithms to gain insights from dataBook Description Data Science Projects with Python is designed to give you practical guidance on industry-standard data analysis and machine learning tools, by applying them to realistic data problems. You will learn how to use pandas and Matplotlib to critically examine datasets with summary statistics and graphs, and extract the insights you seek to derive. You will build your knowledge as you prepare data using the scikit-learn package and feed it to machine learning algorithms such as regularized logistic regression and random forest. You’ll discover how to tune algorithms to provide the most accurate predictions on new and unseen data. As you progress, you’ll gain insights into the working and output of these algorithms, building your understanding of both the predictive capabilities of the models and why they make these predictions. By then end of this book, you will have the necessary skills to confidently use machine learning algorithms to perform detailed data analysis and extract meaningful insights from unstructured data. What you will learnInstall the required packages to set up a data science coding environmentLoad data into a Jupyter notebook running PythonUse Matplotlib to create data visualizationsFit machine learning models using scikit-learnUse lasso and ridge regression to regularize your modelsCompare performance between models to find the best outcomesUse k-fold cross-validation to select model hyperparametersWho this book is for If you are a data analyst, data scientist, or business analyst who wants to get started using Python and machine learning techniques to analyze data and predict outcomes, this book is for you. Basic knowledge of Python and data analytics will help you get the most from this book. Familiarity with mathematical concepts such as algebra and basic statistics will also be useful.

Python Data Visualization Essentials Guide

Download Python Data Visualization Essentials Guide PDF Online Free

Author :
Publisher : BPB Publications
ISBN 13 : 9391030076
Total Pages : 319 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Python Data Visualization Essentials Guide by : Kallur Rahman

Download or read book Python Data Visualization Essentials Guide written by Kallur Rahman and published by BPB Publications. This book was released on 2021-07-30 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build your data science skills. Start data visualization Using Python. Right away. Become a good data analyst by creating quality data visualizations using Python. KEY FEATURES ● Exciting coverage on loads of Python libraries, including Matplotlib, Seaborn, Pandas, and Plotly. ● Tons of examples, illustrations, and use-cases to demonstrate visual storytelling of varied datasets. ● Covers a strong fundamental understanding of exploratory data analysis (EDA), statistical modeling, and data mining. DESCRIPTION Data visualization plays a major role in solving data science challenges with various capabilities it offers. This book aims to equip you with a sound knowledge of Python in conjunction with the concepts you need to master to succeed as a data visualization expert. The book starts with a brief introduction to the world of data visualization and talks about why it is important, the history of visualization, and the capabilities it offers. You will learn how to do simple Python-based visualization with examples with progressive complexity of key features. The book starts with Matplotlib and explores the power of data visualization with over 50 examples. It then explores the power of data visualization using one of the popular exploratory data analysis-oriented libraries, Pandas. The book talks about statistically inclined data visualization libraries such as Seaborn. The book also teaches how we can leverage bokeh and Plotly for interactive data visualization. Each chapter is enriched and loaded with 30+ examples that will guide you in learning everything about data visualization and storytelling of mixed datasets. WHAT YOU WILL LEARN ● Learn to work with popular Python libraries and frameworks, including Seaborn, Bokeh, and Plotly. ● Practice your data visualization understanding across numerous datasets and real examples. ● Learn to visualize geospatial and time-series datasets. ● Perform correlation and EDA analysis using Pandas and Matplotlib. ● Get to know storytelling of complex and unstructured data using Bokeh and Pandas. ● Learn best practices in writing clean and short python scripts for a quicker visual summary of datasets. WHO THIS BOOK IS FOR This book is for all data analytics professionals, data scientists, and data mining hobbyists who want to be strong data visualizers by learning all the popular Python data visualization libraries. Prior working knowledge of Python is assumed. TABLE OF CONTENTS 1. Introduction to Data Visualization 2. Why Data Visualization 3. Various Data Visualization Elements and Tools 4. Using Matplotlib with Python 5. Using NumPy and Pandas for Plotting 6. Using Seaborn for Visualization 7. Using Bokeh with Python 8. Using Plotly, Folium, and Other Tools for Data Visualization 9. Hands-on Examples and Exercises, Case Studies, and Further Resources

Complex Network Analysis in Python

Download Complex Network Analysis in Python PDF Online Free

Author :
Publisher : Pragmatic Bookshelf
ISBN 13 : 1680505408
Total Pages : 330 pages
Book Rating : 4.6/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Complex Network Analysis in Python by : Dmitry Zinoviev

Download or read book Complex Network Analysis in Python written by Dmitry Zinoviev and published by Pragmatic Bookshelf. This book was released on 2018-01-19 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Construct, analyze, and visualize networks with networkx, a Python language module. Network analysis is a powerful tool you can apply to a multitude of datasets and situations. Discover how to work with all kinds of networks, including social, product, temporal, spatial, and semantic networks. Convert almost any real-world data into a complex network--such as recommendations on co-using cosmetic products, muddy hedge fund connections, and online friendships. Analyze and visualize the network, and make business decisions based on your analysis. If you're a curious Python programmer, a data scientist, or a CNA specialist interested in mechanizing mundane tasks, you'll increase your productivity exponentially. Complex network analysis used to be done by hand or with non-programmable network analysis tools, but not anymore! You can now automate and program these tasks in Python. Complex networks are collections of connected items, words, concepts, or people. By exploring their structure and individual elements, we can learn about their meaning, evolution, and resilience. Starting with simple networks, convert real-life and synthetic network graphs into networkx data structures. Look at more sophisticated networks and learn more powerful machinery to handle centrality calculation, blockmodeling, and clique and community detection. Get familiar with presentation-quality network visualization tools, both programmable and interactive--such as Gephi, a CNA explorer. Adapt the patterns from the case studies to your problems. Explore big networks with NetworKit, a high-performance networkx substitute. Each part in the book gives you an overview of a class of networks, includes a practical study of networkx functions and techniques, and concludes with case studies from various fields, including social networking, anthropology, marketing, and sports analytics. Combine your CNA and Python programming skills to become a better network analyst, a more accomplished data scientist, and a more versatile programmer. What You Need: You will need a Python 3.x installation with the following additional modules: Pandas (>=0.18), NumPy (>=1.10), matplotlib (>=1.5), networkx (>=1.11), python-louvain (>=0.5), NetworKit (>=3.6), and generalizesimilarity. We recommend using the Anaconda distribution that comes with all these modules, except for python-louvain, NetworKit, and generalizedsimilarity, and works on all major modern operating systems.

Introduction to Data Science

Download Introduction to Data Science PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319500171
Total Pages : 227 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Data Science by : Laura Igual

Download or read book Introduction to Data Science written by Laura Igual and published by Springer. This book was released on 2017-02-22 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the emerging and interdisciplinary field of data science. The coverage spans key concepts adopted from statistics and machine learning, useful techniques for graph analysis and parallel programming, and the practical application of data science for such tasks as building recommender systems or performing sentiment analysis. Topics and features: provides numerous practical case studies using real-world data throughout the book; supports understanding through hands-on experience of solving data science problems using Python; describes techniques and tools for statistical analysis, machine learning, graph analysis, and parallel programming; reviews a range of applications of data science, including recommender systems and sentiment analysis of text data; provides supplementary code resources and data at an associated website.