Data-driven Models in Inverse Problems

Download Data-driven Models in Inverse Problems PDF Online Free

Author :
Publisher : Walter de Gruyter GmbH & Co KG
ISBN 13 : 3111251292
Total Pages : 664 pages
Book Rating : 4.1/5 (112 download)

DOWNLOAD NOW!


Book Synopsis Data-driven Models in Inverse Problems by : Tatiana A. Bubba

Download or read book Data-driven Models in Inverse Problems written by Tatiana A. Bubba and published by Walter de Gruyter GmbH & Co KG. This book was released on 2024-11-18 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in learning-based methods are revolutionizing several fields in applied mathematics, including inverse problems, resulting in a major paradigm shift towards data-driven approaches. This volume, which is inspired by this cutting-edge area of research, brings together contributors from the inverse problem community and shows how to successfully combine model- and data-driven approaches to gain insight into practical and theoretical issues.

Data-driven Models in Inverse Problems

Download Data-driven Models in Inverse Problems PDF Online Free

Author :
Publisher : Walter de Gruyter GmbH & Co KG
ISBN 13 : 3111251233
Total Pages : 508 pages
Book Rating : 4.1/5 (112 download)

DOWNLOAD NOW!


Book Synopsis Data-driven Models in Inverse Problems by : Tatiana A. Bubba

Download or read book Data-driven Models in Inverse Problems written by Tatiana A. Bubba and published by Walter de Gruyter GmbH & Co KG. This book was released on 2024-11-18 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in learning-based methods are revolutionizing several fields in applied mathematics, including inverse problems, resulting in a major paradigm shift towards data-driven approaches. This volume, which is inspired by this cutting-edge area of research, brings together contributors from the inverse problem community and shows how to successfully combine model- and data-driven approaches to gain insight into practical and theoretical issues.

An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems

Download An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611974917
Total Pages : 275 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems by : Luis Tenorio

Download or read book An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems written by Luis Tenorio and published by SIAM. This book was released on 2017-07-06 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inverse problems are found in many applications, such as medical imaging, engineering, astronomy, and geophysics, among others. To solve an inverse problem is to recover an object from noisy, usually indirect observations. Solutions to inverse problems are subject to many potential sources of error introduced by approximate mathematical models, regularization methods, numerical approximations for efficient computations, noisy data, and limitations in the number of observations; thus it is important to include an assessment of the uncertainties as part of the solution. Such assessment is interdisciplinary by nature, as it requires, in addition to knowledge of the particular application, methods from applied mathematics, probability, and statistics. This book bridges applied mathematics and statistics by providing a basic introduction to probability and statistics for uncertainty quantification in the context of inverse problems, as well as an introduction to statistical regularization of inverse problems. The author covers basic statistical inference, introduces the framework of ill-posed inverse problems, and explains statistical questions that arise in their applications. An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems?includes many examples that explain techniques which are useful to address general problems arising in uncertainty quantification, Bayesian and non-Bayesian statistical methods and discussions of their complementary roles, and analysis of a real data set to illustrate the methodology covered throughout the book.

Modeling and Inverse Problems in the Presence of Uncertainty

Download Modeling and Inverse Problems in the Presence of Uncertainty PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1482206420
Total Pages : 408 pages
Book Rating : 4.4/5 (822 download)

DOWNLOAD NOW!


Book Synopsis Modeling and Inverse Problems in the Presence of Uncertainty by : H. T. Banks

Download or read book Modeling and Inverse Problems in the Presence of Uncertainty written by H. T. Banks and published by CRC Press. This book was released on 2014-04-01 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling and Inverse Problems in the Presence of Uncertainty collects recent research—including the authors’ own substantial projects—on uncertainty propagation and quantification. It covers two sources of uncertainty: where uncertainty is present primarily due to measurement errors and where uncertainty is present due to the modeling formulation itself. After a useful review of relevant probability and statistical concepts, the book summarizes mathematical and statistical aspects of inverse problem methodology, including ordinary, weighted, and generalized least-squares formulations. It then discusses asymptotic theories, bootstrapping, and issues related to the evaluation of correctness of assumed form of statistical models. The authors go on to present methods for evaluating and comparing the validity of appropriateness of a collection of models for describing a given data set, including statistically based model selection and comparison techniques. They also explore recent results on the estimation of probability distributions when they are embedded in complex mathematical models and only aggregate (not individual) data are available. In addition, they briefly discuss the optimal design of experiments in support of inverse problems for given models. The book concludes with a focus on uncertainty in model formulation itself, covering the general relationship of differential equations driven by white noise and the ones driven by colored noise in terms of their resulting probability density functions. It also deals with questions related to the appropriateness of discrete versus continuum models in transitions from small to large numbers of individuals. With many examples throughout addressing problems in physics, biology, and other areas, this book is intended for applied mathematicians interested in deterministic and/or stochastic models and their interactions. It is also suitable for scientists in biology, medicine, engineering, and physics working on basic modeling and inverse problems, uncertainty in modeling, propagation of uncertainty, and statistical modeling.

Inverse Problem Theory and Methods for Model Parameter Estimation

Download Inverse Problem Theory and Methods for Model Parameter Estimation PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 9780898717921
Total Pages : 349 pages
Book Rating : 4.7/5 (179 download)

DOWNLOAD NOW!


Book Synopsis Inverse Problem Theory and Methods for Model Parameter Estimation by : Albert Tarantola

Download or read book Inverse Problem Theory and Methods for Model Parameter Estimation written by Albert Tarantola and published by SIAM. This book was released on 2005-01-01 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: While the prediction of observations is a forward problem, the use of actual observations to infer the properties of a model is an inverse problem. Inverse problems are difficult because they may not have a unique solution. The description of uncertainties plays a central role in the theory, which is based on probability theory. This book proposes a general approach that is valid for linear as well as for nonlinear problems. The philosophy is essentially probabilistic and allows the reader to understand the basic difficulties appearing in the resolution of inverse problems. The book attempts to explain how a method of acquisition of information can be applied to actual real-world problems, and many of the arguments are heuristic.

Computational Methods for Inverse Problems

Download Computational Methods for Inverse Problems PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 0898717574
Total Pages : 195 pages
Book Rating : 4.8/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Computational Methods for Inverse Problems by : Curtis R. Vogel

Download or read book Computational Methods for Inverse Problems written by Curtis R. Vogel and published by SIAM. This book was released on 2002-01-01 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems.

Computational Heat Transfer

Download Computational Heat Transfer PDF Online Free

Author :
Publisher : Routledge
ISBN 13 : 1351458868
Total Pages : 568 pages
Book Rating : 4.3/5 (514 download)

DOWNLOAD NOW!


Book Synopsis Computational Heat Transfer by : Yogesh Jaluria

Download or read book Computational Heat Transfer written by Yogesh Jaluria and published by Routledge. This book was released on 2017-10-19 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition updated the material by expanding coverage of certain topics, adding new examples and problems, removing outdated material, and adding a computer disk, which will be included with each book. Professor Jaluria and Torrance have structured a text addressing both finite difference and finite element methods, comparing a number of applicable methods.

Mathematical Modeling and Computational Predictions in Oncoimmunology

Download Mathematical Modeling and Computational Predictions in Oncoimmunology PDF Online Free

Author :
Publisher : Frontiers Media SA
ISBN 13 : 2832550061
Total Pages : 121 pages
Book Rating : 4.8/5 (325 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Modeling and Computational Predictions in Oncoimmunology by : Vladimir A. Kuznetsov

Download or read book Mathematical Modeling and Computational Predictions in Oncoimmunology written by Vladimir A. Kuznetsov and published by Frontiers Media SA. This book was released on 2024-06-06 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cancer is a complex adaptive dynamic system that causes both local and systemic failures in the patient. Cancer is caused by a number of gain-of-function and loss-of-function events, that lead to cells proliferating without control by the host organism over time. In cancer, the immune system modulates cancer cell population heterogeneity and plays a crucial role in disease outcomes. The immune system itself also generates multiple clones of different cell types, with some clones proliferating quickly and maturing into effector cells. By creating regulatory signals and their networks, and generating effector cells and molecules, the immune system recognizes and kills abnormal cells. Anti-cancer immune mechanisms are realized as multi-layer, nonlinear cellular and molecular interactions. A number of factors determine the outcome of immune system-tumor interactions, including cancer-associated antigens, immune cells, and host organisms.

Data-Driven Modeling & Scientific Computation

Download Data-Driven Modeling & Scientific Computation PDF Online Free

Author :
Publisher :
ISBN 13 : 0199660336
Total Pages : 657 pages
Book Rating : 4.1/5 (996 download)

DOWNLOAD NOW!


Book Synopsis Data-Driven Modeling & Scientific Computation by : Jose Nathan Kutz

Download or read book Data-Driven Modeling & Scientific Computation written by Jose Nathan Kutz and published by . This book was released on 2013-08-08 with total page 657 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combining scientific computing methods and algorithms with modern data analysis techniques, including basic applications of compressive sensing and machine learning, this book develops techniques that allow for the integration of the dynamics of complex systems and big data. MATLAB is used throughout for mathematical solution strategies.

Digest

Download Digest PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 1022 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Digest by :

Download or read book Digest written by and published by . This book was released on 1992 with total page 1022 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Applied Data Analysis and Modeling for Energy Engineers and Scientists

Download Applied Data Analysis and Modeling for Energy Engineers and Scientists PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031348699
Total Pages : 622 pages
Book Rating : 4.0/5 (313 download)

DOWNLOAD NOW!


Book Synopsis Applied Data Analysis and Modeling for Energy Engineers and Scientists by : T. Agami Reddy

Download or read book Applied Data Analysis and Modeling for Energy Engineers and Scientists written by T. Agami Reddy and published by Springer Nature. This book was released on 2023-10-18 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in a thoroughly revised and expanded second edition, this classroom-tested text demonstrates and illustrates how to apply concepts and methods learned in disparate courses such as mathematical modeling, probability, statistics, experimental design, regression, optimization, parameter estimation, inverse modeling, risk analysis, decision-making, and sustainability assessment methods to energy processes and systems. It provides a formal structure that offers a broad and integrative perspective to enhance knowledge, skills, and confidence to work in applied data analysis and modeling problems. This new edition also reflects recent trends and advances in statistical modeling as applied to energy and building processes and systems. It includes numerous examples from recently published technical papers to nurture and stimulate a more research-focused mindset. How the traditional stochastic data modeling approaches are complemented by data analytic algorithmic models such as machine learning and data mining are also discussed. The important societal issues related to the sustainability of energy systems are presented, and a formal structure is proposed meant to classify the various assessment methods found in the literature. Applied Data Analysis and Modeling for Energy Engineers and Scientists is designed for senior-level undergraduate and graduate instruction in energy engineering and mathematical modeling, for continuing education professional courses, and as a self-study reference book for working professionals. In order for readers to have exposure and proficiency with performing hands-on analysis, the open-source Python and R programming languages have been adopted in the form of Jupyter notebooks and R markdown files, and numerous data sets and sample computer code reflective of real-world problems are available online.

Sparse Modeling for Image and Vision Processing

Download Sparse Modeling for Image and Vision Processing PDF Online Free

Author :
Publisher : Now Publishers
ISBN 13 : 9781680830088
Total Pages : 216 pages
Book Rating : 4.8/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Sparse Modeling for Image and Vision Processing by : Julien Mairal

Download or read book Sparse Modeling for Image and Vision Processing written by Julien Mairal and published by Now Publishers. This book was released on 2014-12-19 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sparse Modeling for Image and Vision Processing offers a self-contained view of sparse modeling for visual recognition and image processing. More specifically, it focuses on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.

Dynamic Mode Decomposition

Download Dynamic Mode Decomposition PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611974496
Total Pages : 241 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Dynamic Mode Decomposition by : J. Nathan Kutz

Download or read book Dynamic Mode Decomposition written by J. Nathan Kutz and published by SIAM. This book was released on 2016-11-23 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data-driven dynamical systems is a burgeoning field?it connects how measurements of nonlinear dynamical systems and/or complex systems can be used with well-established methods in dynamical systems theory. This is a critically important new direction because the governing equations of many problems under consideration by practitioners in various scientific fields are not typically known. Thus, using data alone to help derive, in an optimal sense, the best dynamical system representation of a given application allows for important new insights. The recently developed dynamic mode decomposition (DMD) is an innovative tool for integrating data with dynamical systems theory. The DMD has deep connections with traditional dynamical systems theory and many recent innovations in compressed sensing and machine learning. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, the first book to address the DMD algorithm, presents a pedagogical and comprehensive approach to all aspects of DMD currently developed or under development; blends theoretical development, example codes, and applications to showcase the theory and its many innovations and uses; highlights the numerous innovations around the DMD algorithm and demonstrates its efficacy using example problems from engineering and the physical and biological sciences; and provides extensive MATLAB code, data for intuitive examples of key methods, and graphical presentations.

Large Scale Inverse Problems

Download Large Scale Inverse Problems PDF Online Free

Author :
Publisher : Walter de Gruyter
ISBN 13 : 3110282267
Total Pages : 216 pages
Book Rating : 4.1/5 (12 download)

DOWNLOAD NOW!


Book Synopsis Large Scale Inverse Problems by : Mike Cullen

Download or read book Large Scale Inverse Problems written by Mike Cullen and published by Walter de Gruyter. This book was released on 2013-08-29 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is thesecond volume of a three volume series recording the "Radon Special Semester 2011 on Multiscale Simulation & Analysis in Energy and the Environment" that took placein Linz, Austria, October 3-7, 2011. This volume addresses the common ground in the mathematical and computational procedures required for large-scale inverse problems and data assimilation in forefront applications. The solution of inverse problems is fundamental to a wide variety of applications such as weather forecasting, medical tomography, and oil exploration. Regularisation techniques are needed to ensure solutions of sufficient quality to be useful, and soundly theoretically based. This book addresses the common techniques required for all the applications, and is thus truly interdisciplinary. Thiscollection of surveyarticlesfocusses onthe large inverse problems commonly arising in simulation and forecasting in the earth sciences. For example, operational weather forecasting models have between 107 and 108 degrees of freedom. Even so, these degrees of freedom represent grossly space-time averaged properties of the atmosphere. Accurate forecasts require accurate initial conditions. With recent developments in satellite data, there are between 106 and 107 observations each day. However, while these also represent space-time averaged properties, the averaging implicit in the measurements is quite different from that used in the models. In atmosphere and ocean applications, there is a physically-based model available which can be used to regularise the problem. We assume that there is a set of observations with known error characteristics available over a period of time. The basic deterministic technique is to fit a model trajectory to the observations over a period of time to within the observation error. Since the model is not perfect the model trajectory has to be corrected, which defines the data assimilation problem. The stochastic view can be expressed by using an ensemble of model trajectories, and calculating corrections to both the mean value and the spread which allow the observations to be fitted by each ensemble member. In other areas of earth science, only the structure of the model formulation itself is known and the aim is to use the past observation history to determine the unknown model parameters. The book records the achievements of Workshop2 "Large-Scale Inverse Problems and Applications in the Earth Sciences". Itinvolves experts in the theory of inverse problems together with experts working on both theoretical and practical aspects of the techniques by which large inverse problems arise in the earth sciences.

The Ocean Circulation Inverse Problem

Download The Ocean Circulation Inverse Problem PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521480901
Total Pages : 466 pages
Book Rating : 4.4/5 (89 download)

DOWNLOAD NOW!


Book Synopsis The Ocean Circulation Inverse Problem by : Carl Wunsch

Download or read book The Ocean Circulation Inverse Problem written by Carl Wunsch and published by Cambridge University Press. This book was released on 1996-06-13 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the problem of inferring the state of the ocean circulation, from a mathematical perspective.

Spline Models for Observational Data

Download Spline Models for Observational Data PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 0898712440
Total Pages : 174 pages
Book Rating : 4.8/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Spline Models for Observational Data by : Grace Wahba

Download or read book Spline Models for Observational Data written by Grace Wahba and published by SIAM. This book was released on 1990-09-01 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book serves well as an introduction into the more theoretical aspects of the use of spline models. It develops a theory and practice for the estimation of functions from noisy data on functionals. The simplest example is the estimation of a smooth curve, given noisy observations on a finite number of its values. Convergence properties, data based smoothing parameter selection, confidence intervals, and numerical methods are established which are appropriate to a number of problems within this framework. Methods for including side conditions and other prior information in solving ill posed inverse problems are provided. Data which involves samples of random variables with Gaussian, Poisson, binomial, and other distributions are treated in a unified optimization context. Experimental design questions, i.e., which functionals should be observed, are studied in a general context. Extensions to distributed parameter system identification problems are made by considering implicitly defined functionals.

Data-Driven Science and Engineering

Download Data-Driven Science and Engineering PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1009098489
Total Pages : 615 pages
Book Rating : 4.0/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Data-Driven Science and Engineering by : Steven L. Brunton

Download or read book Data-Driven Science and Engineering written by Steven L. Brunton and published by Cambridge University Press. This book was released on 2022-05-05 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.