Data Accelerator for AI and Analytics

Download Data Accelerator for AI and Analytics PDF Online Free

Author :
Publisher : IBM Redbooks
ISBN 13 : 0738459321
Total Pages : 88 pages
Book Rating : 4.7/5 (384 download)

DOWNLOAD NOW!


Book Synopsis Data Accelerator for AI and Analytics by : Simon Lorenz

Download or read book Data Accelerator for AI and Analytics written by Simon Lorenz and published by IBM Redbooks. This book was released on 2021-01-20 with total page 88 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IBM® Redpaper publication focuses on data orchestration in enterprise data pipelines. It provides details about data orchestration and how to address typical challenges that customers face when dealing with large and ever-growing amounts of data for data analytics. While the amount of data increases steadily, artificial intelligence (AI) workloads must speed up to deliver insights and business value in a timely manner. This paper provides a solution that addresses these needs: Data Accelerator for AI and Analytics (DAAA). A proof of concept (PoC) is described in detail. This paper focuses on the functions that are provided by the Data Accelerator for AI and Analytics solution, which simplifies the daily work of data scientists and system administrators. This solution helps increase the efficiency of storage systems and data processing to obtain results faster while eliminating unnecessary data copies and associated data management.

IBM Db2 Analytics Accelerator V7 High Availability and Disaster Recovery

Download IBM Db2 Analytics Accelerator V7 High Availability and Disaster Recovery PDF Online Free

Author :
Publisher : IBM Redbooks
ISBN 13 : 073845768X
Total Pages : 78 pages
Book Rating : 4.7/5 (384 download)

DOWNLOAD NOW!


Book Synopsis IBM Db2 Analytics Accelerator V7 High Availability and Disaster Recovery by : Ute Baumbach

Download or read book IBM Db2 Analytics Accelerator V7 High Availability and Disaster Recovery written by Ute Baumbach and published by IBM Redbooks. This book was released on 2020-10-21 with total page 78 pages. Available in PDF, EPUB and Kindle. Book excerpt: IBM® Db2® Analytics Accelerator is a workload optimized appliance add-on to IBM DB2® for IBM z/OS® that enables the integration of analytic insights into operational processes to drive business critical analytics and exceptional business value. Together, the Db2 Analytics Accelerator and DB2 for z/OS form an integrated hybrid environment that can run transaction processing, complex analytical, and reporting workloads concurrently and efficiently. With IBM DB2 Analytics Accelerator for z/OS V7, the following flexible deployment options are introduced: Accelerator on IBM Integrated Analytics System (IIAS): Deployment on pre-configured hardware and software Accelerator on IBM Z®: Deployment within an IBM Secure Service Container LPAR For using the accelerator for business-critical environments, the need arose to integrate the accelerator into High Availability (HA) architectures and Disaster Recovery (DR) processes. This IBM RedpaperTM publication focuses on different integration aspects of both deployment options of the IBM Db2 Analytics Accelerator into HA and DR environments. It also shares best practices to provide wanted Recovery Time Objectives (RTO) and Recovery Point Objectives (RPO). HA systems often are a requirement in business-critical environments and can be implemented by redundant, independent components. A failure of one of these components is detected automatically and their tasks are taken over by another component. Depending on business requirements, a system can be implemented in a way that users do not notice outages (continuous availability), or in a major disaster, users notice an outage and systems resume services after a defined period, potentially with loss of data from previous work. IBM Z was strong for decades regarding HA and DR. By design, storage and operating systems are implemented in a way to support enhanced availability requirements. IBM Parallel Sysplex® and IBM Globally Dispersed Parallel Sysplex (IBM GDPS®) offer a unique architecture to support various degrees of automated failover and availability concepts. This IBM Redpaper publication shows how IBM Db2 Analytics Accelerator V7 can easily integrate into or complement existing IBM Z topologies for HA and DR. If you are using IBM Db2 Analytics Accelerator V5.1 or lower, see IBM Db2 Analytics Accelerator: High Availability and Disaster Recovery, REDP-5104.

IBM Integrated Synchronization: Incremental Updates Unleashed

Download IBM Integrated Synchronization: Incremental Updates Unleashed PDF Online Free

Author :
Publisher : IBM Redbooks
ISBN 13 : 0738459283
Total Pages : 50 pages
Book Rating : 4.7/5 (384 download)

DOWNLOAD NOW!


Book Synopsis IBM Integrated Synchronization: Incremental Updates Unleashed by : Christian Michel

Download or read book IBM Integrated Synchronization: Incremental Updates Unleashed written by Christian Michel and published by IBM Redbooks. This book was released on 2021-01-27 with total page 50 pages. Available in PDF, EPUB and Kindle. Book excerpt: The IBM® Db2® Analytics Accelerator (Accelerator) is a logical extension of Db2 for IBM z/OS® that provides a high-speed query engine that efficiently and cost-effectively runs analytics workloads. The Accelerator is an integrated back-end component of Db2 for z/OS. Together, they provide a hybrid workload-optimized database management system that seamlessly manages queries that are found in transactional workloads to Db2 for z/OS and queries that are found in analytics applications to Accelerator. Each query runs in its optimal environment for maximum speed and cost efficiency. The incremental update function of Db2 Analytics Accelerator for z/OS updates Accelerator-shadow tables continually. Changes to the data in original Db2 for z/OS tables are propagated to the corresponding target tables with a high frequency and a brief delay. Query results from Accelerator are always extracted from recent, close-to-real-time data. An incremental update capability that is called IBM InfoSphere® Change Data Capture (InfoSphere CDC) is provided by IBM InfoSphere Data Replication for z/OS up to Db2 Analytics Accelerator V7.5. Since then, an extra new replication protocol between Db2 for z/OS and Accelerator that is called IBM Integrated Synchronization was introduced. With Db2 Analytics Accelerator V7.5, customers can choose which one to use. IBM Integrated Synchronization is a built-in product feature that you use to set up incremental updates. It does not require InfoSphere CDC, which is bundled with IBM Db2 Analytics Accelerator. In addition, IBM Integrated Synchronization has more advantages: Simplified administration, packaging, upgrades, and support. These items are managed as part of the Db2 for z/OS maintenance stream. Updates are processed quickly. Reduced CPU consumption on the mainframe due to a streamlined, optimized design where most of the processing is done on the Accelerator. This situation provides reduced latency. Uses IBM Z® Integrated Information Processor (zIIP) on Db2 for z/OS, which leads to reduced CPU costs on IBM Z and better overall performance data, such as throughput and synchronized rows per second. On z/OS, the workload to capture the table changes was reduced, and the remainder can be handled by zIIPs. With the introduction of an enterprise-grade Hybrid Transactional Analytics Processing (HTAP) enabler that is also known as the Wait for Data protocol, the integrated low latency protocol is now enabled to support more analytical queries running against the latest committed data. IBM Db2 for z/OS Data Gate simplifies delivering data from IBM Db2 for z/OS to IBM Cloud® Pak® for Data for direct access by new applications. It uses the special-purpose integrated synchronization protocol to maintain data currency with low latency between Db2 for z/OS and dedicated target databases on IBM Cloud Pak for Data.

Hardware Accelerator Systems for Artificial Intelligence and Machine Learning

Download Hardware Accelerator Systems for Artificial Intelligence and Machine Learning PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0128231238
Total Pages : 414 pages
Book Rating : 4.1/5 (282 download)

DOWNLOAD NOW!


Book Synopsis Hardware Accelerator Systems for Artificial Intelligence and Machine Learning by : Shiho Kim

Download or read book Hardware Accelerator Systems for Artificial Intelligence and Machine Learning written by Shiho Kim and published by Elsevier. This book was released on 2021-04-07 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hardware Accelerator Systems for Artificial Intelligence and Machine Learning, Volume 122 delves into arti?cial Intelligence and the growth it has seen with the advent of Deep Neural Networks (DNNs) and Machine Learning. Updates in this release include chapters on Hardware accelerator systems for artificial intelligence and machine learning, Introduction to Hardware Accelerator Systems for Artificial Intelligence and Machine Learning, Deep Learning with GPUs, Edge Computing Optimization of Deep Learning Models for Specialized Tensor Processing Architectures, Architecture of NPU for DNN, Hardware Architecture for Convolutional Neural Network for Image Processing, FPGA based Neural Network Accelerators, and much more. Updates on new information on the architecture of GPU, NPU and DNN Discusses In-memory computing, Machine intelligence and Quantum computing Includes sections on Hardware Accelerator Systems to improve processing efficiency and performance

Lean Analytics

Download Lean Analytics PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1098168151
Total Pages : 403 pages
Book Rating : 4.0/5 (981 download)

DOWNLOAD NOW!


Book Synopsis Lean Analytics by : Alistair Croll

Download or read book Lean Analytics written by Alistair Croll and published by "O'Reilly Media, Inc.". This book was released on 2024-02-23 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: Whether you're a startup founder trying to disrupt an industry or an entrepreneur trying to provoke change from within, your biggest challenge is creating a product people actually want. Lean Analytics steers you in the right direction. This book shows you how to validate your initial idea, find the right customers, decide what to build, how to monetize your business, and how to spread the word. Packed with more than thirty case studies and insights from over a hundred business experts, Lean Analytics provides you with hard-won, real-world information no entrepreneur can afford to go without. Understand Lean Startup, analytics fundamentals, and the data-driven mindset Look at six sample business models and how they map to new ventures of all sizes Find the One Metric That Matters to you Learn how to draw a line in the sand, so you'll know it's time to move forward Apply Lean Analytics principles to large enterprises and established products

Deployment and Usage Guide for Running AI Workloads on Red Hat OpenShift and NVIDIA DGX Systems with IBM Spectrum Scale

Download Deployment and Usage Guide for Running AI Workloads on Red Hat OpenShift and NVIDIA DGX Systems with IBM Spectrum Scale PDF Online Free

Author :
Publisher : IBM Redbooks
ISBN 13 : 0738459097
Total Pages : 80 pages
Book Rating : 4.7/5 (384 download)

DOWNLOAD NOW!


Book Synopsis Deployment and Usage Guide for Running AI Workloads on Red Hat OpenShift and NVIDIA DGX Systems with IBM Spectrum Scale by : Simon Lorenz

Download or read book Deployment and Usage Guide for Running AI Workloads on Red Hat OpenShift and NVIDIA DGX Systems with IBM Spectrum Scale written by Simon Lorenz and published by IBM Redbooks. This book was released on 2020-11-30 with total page 80 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IBM® Redpaper publication describes the architecture, installation procedure, and results for running a typical training application that works on an automotive data set in an orchestrated and secured environment that provides horizontal scalability of GPU resources across physical node boundaries for deep neural network (DNN) workloads. This paper is mostly relevant for systems engineers, system administrators, or system architects that are responsible for data center infrastructure management and typical day-to-day operations such as system monitoring, operational control, asset management, and security audits. This paper also describes IBM Spectrum® LSF® as a workload manager and IBM Spectrum Discover as a metadata search engine to find the right data for an inference job and automate the data science workflow. With the help of this solution, the data location, which may be on different storage systems, and time of availability for the AI job can be fully abstracted, which provides valuable information for data scientists.

Artificial Intelligence and Hardware Accelerators

Download Artificial Intelligence and Hardware Accelerators PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031221702
Total Pages : 358 pages
Book Rating : 4.0/5 (312 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence and Hardware Accelerators by : Ashutosh Mishra

Download or read book Artificial Intelligence and Hardware Accelerators written by Ashutosh Mishra and published by Springer Nature. This book was released on 2023-03-15 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores new methods, architectures, tools, and algorithms for Artificial Intelligence Hardware Accelerators. The authors have structured the material to simplify readers’ journey toward understanding the aspects of designing hardware accelerators, complex AI algorithms, and their computational requirements, along with the multifaceted applications. Coverage focuses broadly on the hardware aspects of training, inference, mobile devices, and autonomous vehicles (AVs) based AI accelerators

Machine Learning and AI for Healthcare

Download Machine Learning and AI for Healthcare PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1484237994
Total Pages : 390 pages
Book Rating : 4.4/5 (842 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and AI for Healthcare by : Arjun Panesar

Download or read book Machine Learning and AI for Healthcare written by Arjun Panesar and published by Apress. This book was released on 2019-02-04 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore the theory and practical applications of artificial intelligence (AI) and machine learning in healthcare. This book offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare and big data challenges. You’ll discover the ethical implications of healthcare data analytics and the future of AI in population and patient health optimization. You’ll also create a machine learning model, evaluate performance and operationalize its outcomes within your organization. Machine Learning and AI for Healthcare provides techniques on how to apply machine learning within your organization and evaluate the efficacy, suitability, and efficiency of AI applications. These are illustrated through leading case studies, including how chronic disease is being redefined through patient-led data learning and the Internet of Things. What You'll LearnGain a deeper understanding of key machine learning algorithms and their use and implementation within wider healthcare Implement machine learning systems, such as speech recognition and enhanced deep learning/AI Select learning methods/algorithms and tuning for use in healthcare Recognize and prepare for the future of artificial intelligence in healthcare through best practices, feedback loops and intelligent agentsWho This Book Is For Health care professionals interested in how machine learning can be used to develop health intelligence – with the aim of improving patient health, population health and facilitating significant care-payer cost savings.

An Introduction to Data

Download An Introduction to Data PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030044688
Total Pages : 131 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Data by : Francesco Corea

Download or read book An Introduction to Data written by Francesco Corea and published by Springer. This book was released on 2018-11-27 with total page 131 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reflects the author’s years of hands-on experience as an academic and practitioner. It is primarily intended for executives, managers and practitioners who want to redefine the way they think about artificial intelligence (AI) and other exponential technologies. Accordingly the book, which is structured as a collection of largely self-contained articles, includes both general strategic reflections and detailed sector-specific information. More concretely, it shares insights into what it means to work with AI and how to do it more efficiently; what it means to hire a data scientist and what new roles there are in the field; how to use AI in specific industries such as finance or insurance; how AI interacts with other technologies such as blockchain; and, in closing, a review of the use of AI in venture capital, as well as a snapshot of acceleration programs for AI companies.

AI and Big Data on IBM Power Systems Servers

Download AI and Big Data on IBM Power Systems Servers PDF Online Free

Author :
Publisher : IBM Redbooks
ISBN 13 : 0738457515
Total Pages : 162 pages
Book Rating : 4.7/5 (384 download)

DOWNLOAD NOW!


Book Synopsis AI and Big Data on IBM Power Systems Servers by : Scott Vetter

Download or read book AI and Big Data on IBM Power Systems Servers written by Scott Vetter and published by IBM Redbooks. This book was released on 2019-04-10 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: As big data becomes more ubiquitous, businesses are wondering how they can best leverage it to gain insight into their most important business questions. Using machine learning (ML) and deep learning (DL) in big data environments can identify historical patterns and build artificial intelligence (AI) models that can help businesses to improve customer experience, add services and offerings, identify new revenue streams or lines of business (LOBs), and optimize business or manufacturing operations. The power of AI for predictive analytics is being harnessed across all industries, so it is important that businesses familiarize themselves with all of the tools and techniques that are available for integration with their data lake environments. In this IBM® Redbooks® publication, we cover the best practices for deploying and integrating some of the best AI solutions on the market, including: IBM Watson Machine Learning Accelerator (see note for product naming) IBM Watson Studio Local IBM Power SystemsTM IBM SpectrumTM Scale IBM Data Science Experience (IBM DSX) IBM Elastic StorageTM Server Hortonworks Data Platform (HDP) Hortonworks DataFlow (HDF) H2O Driverless AI We map out all the integrations that are possible with our different AI solutions and how they can integrate with your existing or new data lake. We also walk you through some of our client use cases and show you how some of the industry leaders are using Hortonworks, IBM PowerAI, and IBM Watson Studio Local to drive decision making. We also advise you on your deployment options, when to use a GPU, and why you should use the IBM Elastic Storage Server (IBM ESS) to improve storage management. Lastly, we describe how to integrate IBM Watson Machine Learning Accelerator and Hortonworks with or without IBM Watson Studio Local, how to access real-time data, and security. Note: IBM Watson Machine Learning Accelerator is the new product name for IBM PowerAI Enterprise. Note: Hortonworks merged with Cloudera in January 2019. The new company is called Cloudera. References to Hortonworks as a business entity in this publication are now referring to the merged company. Product names beginning with Hortonworks continue to be marketed and sold under their original names.

Brain-Inspired Computing

Download Brain-Inspired Computing PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030824276
Total Pages : 159 pages
Book Rating : 4.0/5 (38 download)

DOWNLOAD NOW!


Book Synopsis Brain-Inspired Computing by : Katrin Amunts

Download or read book Brain-Inspired Computing written by Katrin Amunts and published by Springer Nature. This book was released on 2021-07-20 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book constitutes revised selected papers from the 4th International Workshop on Brain-Inspired Computing, BrainComp 2019, held in Cetraro, Italy, in July 2019. The 11 papers presented in this volume were carefully reviewed and selected for inclusion in this book. They deal with research on brain atlasing, multi-scale models and simulation, HPC and data infra-structures for neuroscience as well as artificial and natural neural architectures.

Learning Deep Learning

Download Learning Deep Learning PDF Online Free

Author :
Publisher : Addison-Wesley Professional
ISBN 13 : 0137470290
Total Pages : 1106 pages
Book Rating : 4.1/5 (374 download)

DOWNLOAD NOW!


Book Synopsis Learning Deep Learning by : Magnus Ekman

Download or read book Learning Deep Learning written by Magnus Ekman and published by Addison-Wesley Professional. This book was released on 2021-07-19 with total page 1106 pages. Available in PDF, EPUB and Kindle. Book excerpt: NVIDIA's Full-Color Guide to Deep Learning: All You Need to Get Started and Get Results "To enable everyone to be part of this historic revolution requires the democratization of AI knowledge and resources. This book is timely and relevant towards accomplishing these lofty goals." -- From the foreword by Dr. Anima Anandkumar, Bren Professor, Caltech, and Director of ML Research, NVIDIA "Ekman uses a learning technique that in our experience has proven pivotal to success—asking the reader to think about using DL techniques in practice. His straightforward approach is refreshing, and he permits the reader to dream, just a bit, about where DL may yet take us." -- From the foreword by Dr. Craig Clawson, Director, NVIDIA Deep Learning Institute Deep learning (DL) is a key component of today's exciting advances in machine learning and artificial intelligence. Learning Deep Learning is a complete guide to DL. Illuminating both the core concepts and the hands-on programming techniques needed to succeed, this book is ideal for developers, data scientists, analysts, and others--including those with no prior machine learning or statistics experience. After introducing the essential building blocks of deep neural networks, such as artificial neurons and fully connected, convolutional, and recurrent layers, Magnus Ekman shows how to use them to build advanced architectures, including the Transformer. He describes how these concepts are used to build modern networks for computer vision and natural language processing (NLP), including Mask R-CNN, GPT, and BERT. And he explains how a natural language translator and a system generating natural language descriptions of images. Throughout, Ekman provides concise, well-annotated code examples using TensorFlow with Keras. Corresponding PyTorch examples are provided online, and the book thereby covers the two dominating Python libraries for DL used in industry and academia. He concludes with an introduction to neural architecture search (NAS), exploring important ethical issues and providing resources for further learning. Explore and master core concepts: perceptrons, gradient-based learning, sigmoid neurons, and back propagation See how DL frameworks make it easier to develop more complicated and useful neural networks Discover how convolutional neural networks (CNNs) revolutionize image classification and analysis Apply recurrent neural networks (RNNs) and long short-term memory (LSTM) to text and other variable-length sequences Master NLP with sequence-to-sequence networks and the Transformer architecture Build applications for natural language translation and image captioning NVIDIA's invention of the GPU sparked the PC gaming market. The company's pioneering work in accelerated computing--a supercharged form of computing at the intersection of computer graphics, high-performance computing, and AI--is reshaping trillion-dollar industries, such as transportation, healthcare, and manufacturing, and fueling the growth of many others. Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.

Competing on Analytics

Download Competing on Analytics PDF Online Free

Author :
Publisher : Harvard Business Press
ISBN 13 : 1422156303
Total Pages : 243 pages
Book Rating : 4.4/5 (221 download)

DOWNLOAD NOW!


Book Synopsis Competing on Analytics by : Thomas H. Davenport

Download or read book Competing on Analytics written by Thomas H. Davenport and published by Harvard Business Press. This book was released on 2007-03-06 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: You have more information at hand about your business environment than ever before. But are you using it to “out-think” your rivals? If not, you may be missing out on a potent competitive tool. In Competing on Analytics: The New Science of Winning, Thomas H. Davenport and Jeanne G. Harris argue that the frontier for using data to make decisions has shifted dramatically. Certain high-performing enterprises are now building their competitive strategies around data-driven insights that in turn generate impressive business results. Their secret weapon? Analytics: sophisticated quantitative and statistical analysis and predictive modeling. Exemplars of analytics are using new tools to identify their most profitable customers and offer them the right price, to accelerate product innovation, to optimize supply chains, and to identify the true drivers of financial performance. A wealth of examples—from organizations as diverse as Amazon, Barclay’s, Capital One, Harrah’s, Procter & Gamble, Wachovia, and the Boston Red Sox—illuminate how to leverage the power of analytics.

IBM Spectrum Discover: Metadata Management for Deep Insight of Unstructured Storage

Download IBM Spectrum Discover: Metadata Management for Deep Insight of Unstructured Storage PDF Online Free

Author :
Publisher : IBM Redbooks
ISBN 13 : 0738457868
Total Pages : 152 pages
Book Rating : 4.7/5 (384 download)

DOWNLOAD NOW!


Book Synopsis IBM Spectrum Discover: Metadata Management for Deep Insight of Unstructured Storage by : Joseph Dain

Download or read book IBM Spectrum Discover: Metadata Management for Deep Insight of Unstructured Storage written by Joseph Dain and published by IBM Redbooks. This book was released on 2019-10-01 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IBM® Redpaper publication provides a comprehensive overview of the IBM Spectrum® Discover metadata management software platform. We give a detailed explanation of how the product creates, collects, and analyzes metadata. Several in-depth use cases are used that show examples of analytics, governance, and optimization. We also provide step-by-step information to install and set up the IBM Spectrum Discover trial environment. More than 80% of all data that is collected by organizations is not in a standard relational database. Instead, it is trapped in unstructured documents, social media posts, machine logs, and so on. Many organizations face significant challenges to manage this deluge of unstructured data such as: Pinpointing and activating relevant data for large-scale analytics Lacking the fine-grained visibility that is needed to map data to business priorities Removing redundant, obsolete, and trivial (ROT) data Identifying and classifying sensitive data IBM Spectrum Discover is a modern metadata management software that provides data insight for petabyte-scale file and Object Storage, storage on premises, and in the cloud. This software enables organizations to make better business decisions and gain and maintain a competitive advantage. IBM Spectrum Discover provides a rich metadata layer that enables storage administrators, data stewards, and data scientists to efficiently manage, classify, and gain insights from massive amounts of unstructured data. It improves storage economics, helps mitigate risk, and accelerates large-scale analytics to create competitive advantage and speed critical research.

The Elements of Big Data Value

Download The Elements of Big Data Value PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030681769
Total Pages : 399 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis The Elements of Big Data Value by : Edward Curry

Download or read book The Elements of Big Data Value written by Edward Curry and published by Springer Nature. This book was released on 2021-08-01 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book presents the foundations of the Big Data research and innovation ecosystem and the associated enablers that facilitate delivering value from data for business and society. It provides insights into the key elements for research and innovation, technical architectures, business models, skills, and best practices to support the creation of data-driven solutions and organizations. The book is a compilation of selected high-quality chapters covering best practices, technologies, experiences, and practical recommendations on research and innovation for big data. The contributions are grouped into four parts: · Part I: Ecosystem Elements of Big Data Value focuses on establishing the big data value ecosystem using a holistic approach to make it attractive and valuable to all stakeholders. · Part II: Research and Innovation Elements of Big Data Value details the key technical and capability challenges to be addressed for delivering big data value. · Part III: Business, Policy, and Societal Elements of Big Data Value investigates the need to make more efficient use of big data and understanding that data is an asset that has significant potential for the economy and society. · Part IV: Emerging Elements of Big Data Value explores the critical elements to maximizing the future potential of big data value. Overall, readers are provided with insights which can support them in creating data-driven solutions, organizations, and productive data ecosystems. The material represents the results of a collective effort undertaken by the European data community as part of the Big Data Value Public-Private Partnership (PPP) between the European Commission and the Big Data Value Association (BDVA) to boost data-driven digital transformation.

Machine Learning for Data Science Handbook

Download Machine Learning for Data Science Handbook PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031246284
Total Pages : 975 pages
Book Rating : 4.0/5 (312 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning for Data Science Handbook by : Lior Rokach

Download or read book Machine Learning for Data Science Handbook written by Lior Rokach and published by Springer Nature. This book was released on 2023-08-17 with total page 975 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book organizes key concepts, theories, standards, methodologies, trends, challenges and applications of data mining and knowledge discovery in databases. It first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. It also gives in-depth descriptions of data mining applications in various interdisciplinary industries.

Artificial Intelligence in Banking

Download Artificial Intelligence in Banking PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 50 pages
Book Rating : 4.6/5 (347 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence in Banking by : Introbooks

Download or read book Artificial Intelligence in Banking written by Introbooks and published by . This book was released on 2020-04-07 with total page 50 pages. Available in PDF, EPUB and Kindle. Book excerpt: In these highly competitive times and with so many technological advancements, it is impossible for any industry to remain isolated and untouched by innovations. In this era of digital economy, the banking sector cannot exist and operate without the various digital tools offered by the ever new innovations happening in the field of Artificial Intelligence (AI) and its sub-set technologies. New technologies have enabled incredible progression in the finance industry. Artificial Intelligence (AI) and Machine Learning (ML) have provided the investors and customers with more innovative tools, new types of financial products and a new potential for growth.According to Cathy Bessant (the Chief Operations and Technology Officer, Bank of America), AI is not just a technology discussion. It is also a discussion about data and how it is used and protected. She says, "In a world focused on using AI in new ways, we're focused on using it wisely and responsibly."