Differential and Integral Calculus for Beginners

Download Differential and Integral Calculus for Beginners PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 264 pages
Book Rating : 4.A/5 ( download)

DOWNLOAD NOW!


Book Synopsis Differential and Integral Calculus for Beginners by : Edwin Edser

Download or read book Differential and Integral Calculus for Beginners written by Edwin Edser and published by . This book was released on 1901 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt:

The Geometry of Geodesics

Download The Geometry of Geodesics PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486154629
Total Pages : 434 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis The Geometry of Geodesics by : Herbert Busemann

Download or read book The Geometry of Geodesics written by Herbert Busemann and published by Courier Corporation. This book was released on 2012-07-12 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive approach to qualitative problems in intrinsic differential geometry, this text examines Desarguesian spaces, perpendiculars and parallels, covering spaces, the influence of the sign of the curvature on geodesics, more. 1955 edition. Includes 66 figures.

Introduction to Differential Calculus

Download Introduction to Differential Calculus PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118117751
Total Pages : 788 pages
Book Rating : 4.1/5 (181 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Differential Calculus by : Ulrich L. Rohde

Download or read book Introduction to Differential Calculus written by Ulrich L. Rohde and published by John Wiley & Sons. This book was released on 2012-01-11 with total page 788 pages. Available in PDF, EPUB and Kindle. Book excerpt: Enables readers to apply the fundamentals of differential calculus to solve real-life problems in engineering and the physical sciences Introduction to Differential Calculus fully engages readers by presenting the fundamental theories and methods of differential calculus and then showcasing how the discussed concepts can be applied to real-world problems in engineering and the physical sciences. With its easy-to-follow style and accessible explanations, the book sets a solid foundation before advancing to specific calculus methods, demonstrating the connections between differential calculus theory and its applications. The first five chapters introduce underlying concepts such as algebra, geometry, coordinate geometry, and trigonometry. Subsequent chapters present a broad range of theories, methods, and applications in differential calculus, including: Concepts of function, continuity, and derivative Properties of exponential and logarithmic function Inverse trigonometric functions and their properties Derivatives of higher order Methods to find maximum and minimum values of a function Hyperbolic functions and their properties Readers are equipped with the necessary tools to quickly learn how to understand a broad range of current problems throughout the physical sciences and engineering that can only be solved with calculus. Examples throughout provide practical guidance, and practice problems and exercises allow for further development and fine-tuning of various calculus skills. Introduction to Differential Calculus is an excellent book for upper-undergraduate calculus courses and is also an ideal reference for students and professionals alike who would like to gain a further understanding of the use of calculus to solve problems in a simplified manner.

General Relativity for Mathematicians

Download General Relativity for Mathematicians PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461299039
Total Pages : 302 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis General Relativity for Mathematicians by : R.K. Sachs

Download or read book General Relativity for Mathematicians written by R.K. Sachs and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a book about physics, written for mathematicians. The readers we have in mind can be roughly described as those who: I. are mathematics graduate students with some knowledge of global differential geometry 2. have had the equivalent of freshman physics, and find popular accounts of astrophysics and cosmology interesting 3. appreciate mathematical elarity, but are willing to accept physical motiva tions for the mathematics in place of mathematical ones 4. are willing to spend time and effort mastering certain technical details, such as those in Section 1. 1. Each book disappoints so me readers. This one will disappoint: 1. physicists who want to use this book as a first course on differential geometry 2. mathematicians who think Lorentzian manifolds are wholly similar to Riemannian ones, or that, given a sufficiently good mathematical back ground, the essentials of a subject !ike cosmology can be learned without so me hard work on boring detaiis 3. those who believe vague philosophical arguments have more than historical and heuristic significance, that general relativity should somehow be "proved," or that axiomatization of this subject is useful 4. those who want an encyclopedic treatment (the books by Hawking-Ellis [1], Penrose [1], Weinberg [1], and Misner-Thorne-Wheeler [I] go further into the subject than we do; see also the survey article, Sachs-Wu [1]). 5. mathematicians who want to learn quantum physics or unified fieId theory (unfortunateIy, quantum physics texts all seem either to be for physicists, or merely concerned with formaI mathematics).

Introduction to Integral Calculus

Download Introduction to Integral Calculus PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118130332
Total Pages : 371 pages
Book Rating : 4.1/5 (181 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Integral Calculus by : Ulrich L. Rohde

Download or read book Introduction to Integral Calculus written by Ulrich L. Rohde and published by John Wiley & Sons. This book was released on 2012-01-20 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introduction to the fundamentals of calculus needed to solve current problems in engineering and the physical sciences I ntegration is an important function of calculus, and Introduction to Integral Calculus combines fundamental concepts with scientific problems to develop intuition and skills for solving mathematical problems related to engineering and the physical sciences. The authors provide a solid introduction to integral calculus and feature applications of integration, solutions of differential equations, and evaluation methods. With logical organization coupled with clear, simple explanations, the authors reinforce new concepts to progressively build skills and knowledge, and numerous real-world examples as well as intriguing applications help readers to better understand the connections between the theory of calculus and practical problem solving. The first six chapters address the prerequisites needed to understand the principles of integral calculus and explore such topics as anti-derivatives, methods of converting integrals into standard form, and the concept of area. Next, the authors review numerous methods and applications of integral calculus, including: Mastering and applying the first and second fundamental theorems of calculus to compute definite integrals Defining the natural logarithmic function using calculus Evaluating definite integrals Calculating plane areas bounded by curves Applying basic concepts of differential equations to solve ordinary differential equations With this book as their guide, readers quickly learn to solve a broad range of current problems throughout the physical sciences and engineering that can only be solved with calculus. Examples throughout provide practical guidance, and practice problems and exercises allow for further development and fine-tuning of various calculus skills. Introduction to Integral Calculus is an excellent book for upper-undergraduate calculus courses and is also an ideal reference for students and professionals who would like to gain a further understanding of the use of calculus to solve problems in a simplified manner.

An Introduction to Analytic Geometry and Calculus

Download An Introduction to Analytic Geometry and Calculus PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 1483265226
Total Pages : 425 pages
Book Rating : 4.4/5 (832 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Analytic Geometry and Calculus by : A. C. Burdette

Download or read book An Introduction to Analytic Geometry and Calculus written by A. C. Burdette and published by Academic Press. This book was released on 2014-05-10 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Analytic Geometry and Calculus covers the basic concepts of analytic geometry and the elementary operations of calculus. This book is composed of 14 chapters and begins with an overview of the fundamental relations of the coordinate system. The next chapters deal with the fundamentals of straight line, nonlinear equations and graphs, functions and limits, and derivatives. These topics are followed by a discussion of some applications of previously covered mathematical subjects. This text also considers the fundamentals of the integrals, trigonometric functions, exponential and logarithm functions, and methods of integration. The final chapters look into the concepts of parametric equations, polar coordinates, and infinite series. This book will prove useful to mathematicians and undergraduate and graduate mathematics students.

Advanced Calculus (Revised Edition)

Download Advanced Calculus (Revised Edition) PDF Online Free

Author :
Publisher : World Scientific Publishing Company
ISBN 13 : 9814583952
Total Pages : 595 pages
Book Rating : 4.8/5 (145 download)

DOWNLOAD NOW!


Book Synopsis Advanced Calculus (Revised Edition) by : Lynn Harold Loomis

Download or read book Advanced Calculus (Revised Edition) written by Lynn Harold Loomis and published by World Scientific Publishing Company. This book was released on 2014-02-26 with total page 595 pages. Available in PDF, EPUB and Kindle. Book excerpt: An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.

Tensors, Differential Forms, and Variational Principles

Download Tensors, Differential Forms, and Variational Principles PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 048613198X
Total Pages : 402 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis Tensors, Differential Forms, and Variational Principles by : David Lovelock

Download or read book Tensors, Differential Forms, and Variational Principles written by David Lovelock and published by Courier Corporation. This book was released on 2012-04-20 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Incisive, self-contained account of tensor analysis and the calculus of exterior differential forms, interaction between the concept of invariance and the calculus of variations. Emphasis is on analytical techniques. Includes problems.

Differential Calculus for Beginners

Download Differential Calculus for Beginners PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 284 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Differential Calculus for Beginners by : Joseph Edwards

Download or read book Differential Calculus for Beginners written by Joseph Edwards and published by . This book was released on 1893 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Modern Differential Geometry for Physicists

Download Modern Differential Geometry for Physicists PDF Online Free

Author :
Publisher : Allied Publishers
ISBN 13 : 9788177643169
Total Pages : 308 pages
Book Rating : 4.6/5 (431 download)

DOWNLOAD NOW!


Book Synopsis Modern Differential Geometry for Physicists by : Chris J. Isham

Download or read book Modern Differential Geometry for Physicists written by Chris J. Isham and published by Allied Publishers. This book was released on 2002 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Introduction to Differential Geometry

Download Introduction to Differential Geometry PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 1400877865
Total Pages : 315 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Differential Geometry by : Luther Pfahler Eisenhart

Download or read book Introduction to Differential Geometry written by Luther Pfahler Eisenhart and published by Princeton University Press. This book was released on 2015-12-08 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Book 3 in the Princeton Mathematical Series. Originally published in 1950. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Lectures on Classical Differential Geometry

Download Lectures on Classical Differential Geometry PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486138186
Total Pages : 254 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Classical Differential Geometry by : Dirk J. Struik

Download or read book Lectures on Classical Differential Geometry written by Dirk J. Struik and published by Courier Corporation. This book was released on 2012-04-26 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elementary, yet authoritative and scholarly, this book offers an excellent brief introduction to the classical theory of differential geometry. It is aimed at advanced undergraduate and graduate students who will find it not only highly readable but replete with illustrations carefully selected to help stimulate the student's visual understanding of geometry. The text features an abundance of problems, most of which are simple enough for class use, and often convey an interesting geometrical fact. A selection of more difficult problems has been included to challenge the ambitious student. Written by a noted mathematician and historian of mathematics, this volume presents the fundamental conceptions of the theory of curves and surfaces and applies them to a number of examples. Dr. Struik has enhanced the treatment with copious historical, biographical, and bibliographical references that place the theory in context and encourage the student to consult original sources and discover additional important ideas there. For this second edition, Professor Struik made some corrections and added an appendix with a sketch of the application of Cartan's method of Pfaffians to curve and surface theory. The result was to further increase the merit of this stimulating, thought-provoking text — ideal for classroom use, but also perfectly suited for self-study. In this attractive, inexpensive paperback edition, it belongs in the library of any mathematician or student of mathematics interested in differential geometry.

A Geometric Approach to Differential Forms

Download A Geometric Approach to Differential Forms PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0817683046
Total Pages : 167 pages
Book Rating : 4.8/5 (176 download)

DOWNLOAD NOW!


Book Synopsis A Geometric Approach to Differential Forms by : David Bachman

Download or read book A Geometric Approach to Differential Forms written by David Bachman and published by Springer Science & Business Media. This book was released on 2012-02-02 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents differential forms from a geometric perspective accessible at the undergraduate level. It begins with basic concepts such as partial differentiation and multiple integration and gently develops the entire machinery of differential forms. The subject is approached with the idea that complex concepts can be built up by analogy from simpler cases, which, being inherently geometric, often can be best understood visually. Each new concept is presented with a natural picture that students can easily grasp. Algebraic properties then follow. The book contains excellent motivation, numerous illustrations and solutions to selected problems.

Differential Geometry

Download Differential Geometry PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486318621
Total Pages : 384 pages
Book Rating : 4.4/5 (863 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry by : Erwin Kreyszig

Download or read book Differential Geometry written by Erwin Kreyszig and published by Courier Corporation. This book was released on 2013-04-26 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory textbook on the differential geometry of curves and surfaces in 3-dimensional Euclidean space, presented in its simplest, most essential form. With problems and solutions. Includes 99 illustrations.

Integral Calculus for Beginners

Download Integral Calculus for Beginners PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 330 pages
Book Rating : 4.A/5 ( download)

DOWNLOAD NOW!


Book Synopsis Integral Calculus for Beginners by : Joseph Edwards

Download or read book Integral Calculus for Beginners written by Joseph Edwards and published by . This book was released on 1894 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Calculus

Download Calculus PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814324264
Total Pages : 501 pages
Book Rating : 4.8/5 (143 download)

DOWNLOAD NOW!


Book Synopsis Calculus by : Kenneth Kuttler

Download or read book Calculus written by Kenneth Kuttler and published by World Scientific. This book was released on 2011 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a book on single variable calculus including most of the important applications of calculus. It also includes proofs of all theorems presented, either in the text itself, or in an appendix. It also contains an introduction to vectors and vector products which is developed further in Volume 2. While the book does include all the proofs of the theorems, many of the applications are presented more simply and less formally than is often the case in similar titles. Supplementary materials are available upon request for all instructors who adopt this book as a course text. Please send your request to [email protected]. This book is also available as a set with Volume 2: CALCULUS: Theory and Applications.

Differential Geometry

Download Differential Geometry PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319550845
Total Pages : 358 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry by : Loring W. Tu

Download or read book Differential Geometry written by Loring W. Tu and published by Springer. This book was released on 2017-06-01 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.