Convex Analysis

Download Convex Analysis PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 1400873177
Total Pages : 470 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Convex Analysis by : Ralph Tyrell Rockafellar

Download or read book Convex Analysis written by Ralph Tyrell Rockafellar and published by Princeton University Press. This book was released on 2015-04-29 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: Available for the first time in paperback, R. Tyrrell Rockafellar's classic study presents readers with a coherent branch of nonlinear mathematical analysis that is especially suited to the study of optimization problems. Rockafellar's theory differs from classical analysis in that differentiability assumptions are replaced by convexity assumptions. The topics treated in this volume include: systems of inequalities, the minimum or maximum of a convex function over a convex set, Lagrange multipliers, minimax theorems and duality, as well as basic results about the structure of convex sets and the continuity and differentiability of convex functions and saddle- functions. This book has firmly established a new and vital area not only for pure mathematics but also for applications to economics and engineering. A sound knowledge of linear algebra and introductory real analysis should provide readers with sufficient background for this book. There is also a guide for the reader who may be using the book as an introduction, indicating which parts are essential and which may be skipped on a first reading.

Convex Analysis and Monotone Operator Theory in Hilbert Spaces

Download Convex Analysis and Monotone Operator Theory in Hilbert Spaces PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319483110
Total Pages : 624 pages
Book Rating : 4.3/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Convex Analysis and Monotone Operator Theory in Hilbert Spaces by : Heinz H. Bauschke

Download or read book Convex Analysis and Monotone Operator Theory in Hilbert Spaces written by Heinz H. Bauschke and published by Springer. This book was released on 2017-02-28 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference text, now in its second edition, offers a modern unifying presentation of three basic areas of nonlinear analysis: convex analysis, monotone operator theory, and the fixed point theory of nonexpansive operators. Taking a unique comprehensive approach, the theory is developed from the ground up, with the rich connections and interactions between the areas as the central focus, and it is illustrated by a large number of examples. The Hilbert space setting of the material offers a wide range of applications while avoiding the technical difficulties of general Banach spaces. The authors have also drawn upon recent advances and modern tools to simplify the proofs of key results making the book more accessible to a broader range of scholars and users. Combining a strong emphasis on applications with exceptionally lucid writing and an abundance of exercises, this text is of great value to a large audience including pure and applied mathematicians as well as researchers in engineering, data science, machine learning, physics, decision sciences, economics, and inverse problems. The second edition of Convex Analysis and Monotone Operator Theory in Hilbert Spaces greatly expands on the first edition, containing over 140 pages of new material, over 270 new results, and more than 100 new exercises. It features a new chapter on proximity operators including two sections on proximity operators of matrix functions, in addition to several new sections distributed throughout the original chapters. Many existing results have been improved, and the list of references has been updated. Heinz H. Bauschke is a Full Professor of Mathematics at the Kelowna campus of the University of British Columbia, Canada. Patrick L. Combettes, IEEE Fellow, was on the faculty of the City University of New York and of Université Pierre et Marie Curie – Paris 6 before joining North Carolina State University as a Distinguished Professor of Mathematics in 2016.

Contributions to Nonlinear Functional Analysis

Download Contributions to Nonlinear Functional Analysis PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 1483266621
Total Pages : 687 pages
Book Rating : 4.4/5 (832 download)

DOWNLOAD NOW!


Book Synopsis Contributions to Nonlinear Functional Analysis by : Eduardo H. Zarantonello

Download or read book Contributions to Nonlinear Functional Analysis written by Eduardo H. Zarantonello and published by Academic Press. This book was released on 2014-05-10 with total page 687 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contributions to Nonlinear Functional Analysis contains the proceedings of a Symposium on Nonlinear Functional Analysis, held in Madison, Wisconsin, on April 12-14, 1971, under the sponsorship of the University of Wisconsin's Mathematics Research Center. The symposium provided a forum for discussing various topics related to nonlinear functional analysis, from transversality in nonlinear eigenvalue problems to monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations. Comprised of 15 chapters, this book begins by presenting an extension of Leray-Schauder degree and an application to a nonlinear elliptic boundary value problem. The discussion then turns to the use of degree theory to prove the existence of global continua of solutions of nonlinear eigenvalue problems; transversality in nonlinear eigenvalue problems; and how variational structure can be used to study some local questions in bifurcation theory. Subsequent chapters deal with the notion of monotone operators and monotonicity theory; a nonlinear version of the Hille-Yosida theorem; a version of the penalty method for the Navier-Stokes equations; and various types of weak solutions for minimizing problems in the spirit of duality theory for convex functionals. This monograph will be of interest to students and practitioners in the field of mathematics who want to learn more about nonlinear functional analysis.

Convex and Set-Valued Analysis

Download Convex and Set-Valued Analysis PDF Online Free

Author :
Publisher : Walter de Gruyter GmbH & Co KG
ISBN 13 : 3110460416
Total Pages : 244 pages
Book Rating : 4.1/5 (14 download)

DOWNLOAD NOW!


Book Synopsis Convex and Set-Valued Analysis by : Aram V. Arutyunov

Download or read book Convex and Set-Valued Analysis written by Aram V. Arutyunov and published by Walter de Gruyter GmbH & Co KG. This book was released on 2016-12-05 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is devoted to a compressed and self-contained exposition of two important parts of contemporary mathematics: convex and set-valued analysis. In the first part, properties of convex sets, the theory of separation, convex functions and their differentiability, properties of convex cones in finite- and infinite-dimensional spaces are discussed. The second part covers some important parts of set-valued analysis. There the properties of the Hausdorff metric and various continuity concepts of set-valued maps are considered. The great attention is paid also to measurable set-valued functions, continuous, Lipschitz and some special types of selections, fixed point and coincidence theorems, covering set-valued maps, topological degree theory and differential inclusions. Contents: Preface Part I: Convex analysis Convex sets and their properties The convex hull of a set. The interior of convex sets The affine hull of sets. The relative interior of convex sets Separation theorems for convex sets Convex functions Closedness, boundedness, continuity, and Lipschitz property of convex functions Conjugate functions Support functions Differentiability of convex functions and the subdifferential Convex cones A little more about convex cones in infinite-dimensional spaces A problem of linear programming More about convex sets and convex hulls Part II: Set-valued analysis Introduction to the theory of topological and metric spaces The Hausdorff metric and the distance between sets Some fine properties of the Hausdorff metric Set-valued maps. Upper semicontinuous and lower semicontinuous set-valued maps A base of topology of the spaceHc(X) Measurable set-valued maps. Measurable selections and measurable choice theorems The superposition set-valued operator The Michael theorem and continuous selections. Lipschitz selections. Single-valued approximations Special selections of set-valued maps Differential inclusions Fixed points and coincidences of maps in metric spaces Stability of coincidence points and properties of covering maps Topological degree and fixed points of set-valued maps in Banach spaces Existence results for differential inclusions via the fixed point method Notation Bibliography Index

Convex Analysis and Optimization

Download Convex Analysis and Optimization PDF Online Free

Author :
Publisher : Athena Scientific
ISBN 13 : 1886529450
Total Pages : 560 pages
Book Rating : 4.8/5 (865 download)

DOWNLOAD NOW!


Book Synopsis Convex Analysis and Optimization by : Dimitri Bertsekas

Download or read book Convex Analysis and Optimization written by Dimitri Bertsekas and published by Athena Scientific. This book was released on 2003-03-01 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: A uniquely pedagogical, insightful, and rigorous treatment of the analytical/geometrical foundations of optimization. The book provides a comprehensive development of convexity theory, and its rich applications in optimization, including duality, minimax/saddle point theory, Lagrange multipliers, and Lagrangian relaxation/nondifferentiable optimization. It is an excellent supplement to several of our books: Convex Optimization Theory (Athena Scientific, 2009), Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 2016), Network Optimization (Athena Scientific, 1998), and Introduction to Linear Optimization (Athena Scientific, 1997). Aside from a thorough account of convex analysis and optimization, the book aims to restructure the theory of the subject, by introducing several novel unifying lines of analysis, including: 1) A unified development of minimax theory and constrained optimization duality as special cases of duality between two simple geometrical problems. 2) A unified development of conditions for existence of solutions of convex optimization problems, conditions for the minimax equality to hold, and conditions for the absence of a duality gap in constrained optimization. 3) A unification of the major constraint qualifications allowing the use of Lagrange multipliers for nonconvex constrained optimization, using the notion of constraint pseudonormality and an enhanced form of the Fritz John necessary optimality conditions. Among its features the book: a) Develops rigorously and comprehensively the theory of convex sets and functions, in the classical tradition of Fenchel and Rockafellar b) Provides a geometric, highly visual treatment of convex and nonconvex optimization problems, including existence of solutions, optimality conditions, Lagrange multipliers, and duality c) Includes an insightful and comprehensive presentation of minimax theory and zero sum games, and its connection with duality d) Describes dual optimization, the associated computational methods, including the novel incremental subgradient methods, and applications in linear, quadratic, and integer programming e) Contains many examples, illustrations, and exercises with complete solutions (about 200 pages) posted at the publisher's web site http://www.athenasc.com/convexity.html

An Easy Path to Convex Analysis and Applications

Download An Easy Path to Convex Analysis and Applications PDF Online Free

Author :
Publisher : Morgan & Claypool Publishers
ISBN 13 : 1627052380
Total Pages : 219 pages
Book Rating : 4.6/5 (27 download)

DOWNLOAD NOW!


Book Synopsis An Easy Path to Convex Analysis and Applications by : Boris S. Mordukhovich

Download or read book An Easy Path to Convex Analysis and Applications written by Boris S. Mordukhovich and published by Morgan & Claypool Publishers. This book was released on 2013-12-01 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: Convex optimization has an increasing impact on many areas of mathematics, applied sciences, and practical applications. It is now being taught at many universities and being used by researchers of different fields. As convex analysis is the mathematical f

Convex Optimization

Download Convex Optimization PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521833783
Total Pages : 744 pages
Book Rating : 4.8/5 (337 download)

DOWNLOAD NOW!


Book Synopsis Convex Optimization by : Stephen P. Boyd

Download or read book Convex Optimization written by Stephen P. Boyd and published by Cambridge University Press. This book was released on 2004-03-08 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.

Convex Functional Analysis

Download Convex Functional Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3764373571
Total Pages : 238 pages
Book Rating : 4.7/5 (643 download)

DOWNLOAD NOW!


Book Synopsis Convex Functional Analysis by : Andrew J. Kurdila

Download or read book Convex Functional Analysis written by Andrew J. Kurdila and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is dedicated to the fundamentals of convex functional analysis. It presents those aspects of functional analysis that are extensively used in various applications to mechanics and control theory. The purpose of the text is essentially two-fold. On the one hand, a bare minimum of the theory required to understand the principles of functional, convex and set-valued analysis is presented. Numerous examples and diagrams provide as intuitive an explanation of the principles as possible. On the other hand, the volume is largely self-contained. Those with a background in graduate mathematics will find a concise summary of all main definitions and theorems.

Asymptotic Cones and Functions in Optimization and Variational Inequalities

Download Asymptotic Cones and Functions in Optimization and Variational Inequalities PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387225900
Total Pages : 259 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Asymptotic Cones and Functions in Optimization and Variational Inequalities by : Alfred Auslender

Download or read book Asymptotic Cones and Functions in Optimization and Variational Inequalities written by Alfred Auslender and published by Springer Science & Business Media. This book was released on 2006-05-07 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: This systematic and comprehensive account of asymptotic sets and functions develops a broad and useful theory in the areas of optimization and variational inequalities. The central focus is on problems of handling unbounded situations, using solutions of a given problem in these classes, when for example standard compacity hypothesis is not present. This book will interest advanced graduate students, researchers, and practitioners of optimization theory, nonlinear programming, and applied mathematics.

Convex Analysis and Nonlinear Optimization

Download Convex Analysis and Nonlinear Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387312560
Total Pages : 316 pages
Book Rating : 4.3/5 (873 download)

DOWNLOAD NOW!


Book Synopsis Convex Analysis and Nonlinear Optimization by : Jonathan Borwein

Download or read book Convex Analysis and Nonlinear Optimization written by Jonathan Borwein and published by Springer Science & Business Media. This book was released on 2010-05-05 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization is a rich and thriving mathematical discipline, and the underlying theory of current computational optimization techniques grows ever more sophisticated. This book aims to provide a concise, accessible account of convex analysis and its applications and extensions, for a broad audience. Each section concludes with an often extensive set of optional exercises. This new edition adds material on semismooth optimization, as well as several new proofs.

Cones and Duality

Download Cones and Duality PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821841467
Total Pages : 298 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Cones and Duality by : Charalambos D. Aliprantis

Download or read book Cones and Duality written by Charalambos D. Aliprantis and published by American Mathematical Soc.. This book was released on 2007-06-12 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ordered vector spaces and cones made their debut in mathematics at the beginning of the twentieth century. They were developed in parallel (but from a different perspective) with functional analysis and operator theory. Before the 1950s, ordered vector spaces appeared in the literature in a fragmented way. Their systematic study began around the world after 1950 mainly through the efforts of the Russian, Japanese, German, and Dutch schools. Since cones are being employed to solve optimization problems, the theory of ordered vector spaces is an indispensable tool for solving a variety of applied problems appearing in several diverse areas, such as engineering, econometrics, and the social sciences. For this reason this theory plays a prominent role not only in functional analysis but also in a wide range of applications. This is a book about a modern perspective on cones and ordered vector spaces. It includes material that has not been presented earlier in a monograph or a textbook. With many exercises of varying degrees of difficulty, the book is suitable for graduate courses. Most of the new topics currently discussed in the book have their origins in problems from economics and finance. Therefore, the book will be valuable to any researcher and graduate student who works in mathematics, engineering, economics, finance, and any other field that uses optimization techniques.

Lectures on Modern Convex Optimization

Download Lectures on Modern Convex Optimization PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 0898714915
Total Pages : 500 pages
Book Rating : 4.8/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Modern Convex Optimization by : Aharon Ben-Tal

Download or read book Lectures on Modern Convex Optimization written by Aharon Ben-Tal and published by SIAM. This book was released on 2001-01-01 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here is a book devoted to well-structured and thus efficiently solvable convex optimization problems, with emphasis on conic quadratic and semidefinite programming. The authors present the basic theory underlying these problems as well as their numerous applications in engineering, including synthesis of filters, Lyapunov stability analysis, and structural design. The authors also discuss the complexity issues and provide an overview of the basic theory of state-of-the-art polynomial time interior point methods for linear, conic quadratic, and semidefinite programming. The book's focus on well-structured convex problems in conic form allows for unified theoretical and algorithmical treatment of a wide spectrum of important optimization problems arising in applications.

Convex Optimization Theory

Download Convex Optimization Theory PDF Online Free

Author :
Publisher : Athena Scientific
ISBN 13 : 1886529310
Total Pages : 256 pages
Book Rating : 4.8/5 (865 download)

DOWNLOAD NOW!


Book Synopsis Convex Optimization Theory by : Dimitri Bertsekas

Download or read book Convex Optimization Theory written by Dimitri Bertsekas and published by Athena Scientific. This book was released on 2009-06-01 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: An insightful, concise, and rigorous treatment of the basic theory of convex sets and functions in finite dimensions, and the analytical/geometrical foundations of convex optimization and duality theory. Convexity theory is first developed in a simple accessible manner, using easily visualized proofs. Then the focus shifts to a transparent geometrical line of analysis to develop the fundamental duality between descriptions of convex functions in terms of points, and in terms of hyperplanes. Finally, convexity theory and abstract duality are applied to problems of constrained optimization, Fenchel and conic duality, and game theory to develop the sharpest possible duality results within a highly visual geometric framework. This on-line version of the book, includes an extensive set of theoretical problems with detailed high-quality solutions, which significantly extend the range and value of the book. The book may be used as a text for a theoretical convex optimization course; the author has taught several variants of such a course at MIT and elsewhere over the last ten years. It may also be used as a supplementary source for nonlinear programming classes, and as a theoretical foundation for classes focused on convex optimization models (rather than theory). It is an excellent supplement to several of our books: Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 2017), Network Optimization(Athena Scientific, 1998), Introduction to Linear Optimization (Athena Scientific, 1997), and Network Flows and Monotropic Optimization (Athena Scientific, 1998).

Variational Analysis

Download Variational Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642024319
Total Pages : 747 pages
Book Rating : 4.6/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Variational Analysis by : R. Tyrrell Rockafellar

Download or read book Variational Analysis written by R. Tyrrell Rockafellar and published by Springer Science & Business Media. This book was released on 2009-06-26 with total page 747 pages. Available in PDF, EPUB and Kindle. Book excerpt: From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.

Lectures On Convex Sets (Second Edition)

Download Lectures On Convex Sets (Second Edition) PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9811202133
Total Pages : 611 pages
Book Rating : 4.8/5 (112 download)

DOWNLOAD NOW!


Book Synopsis Lectures On Convex Sets (Second Edition) by : Valeriu Soltan

Download or read book Lectures On Convex Sets (Second Edition) written by Valeriu Soltan and published by World Scientific. This book was released on 2019-11-28 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides a self-contained and systematic treatment of algebraic and topological properties of convex sets in the n-dimensional Euclidean space. It benefits advanced undergraduate and graduate students with various majors in mathematics, optimization, and operations research. It may be adapted as a primary book or an additional text for any course in convex geometry or convex analysis, aimed at non-geometers. It can be a source for independent study and a reference book for researchers in academia.The second edition essentially extends and revises the original book. Every chapter is rewritten, with many new theorems, examples, problems, and bibliographical references included. It contains three new chapters and 100 additional problems with solutions.

Interior-point Polynomial Algorithms in Convex Programming

Download Interior-point Polynomial Algorithms in Convex Programming PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 9781611970791
Total Pages : 414 pages
Book Rating : 4.9/5 (77 download)

DOWNLOAD NOW!


Book Synopsis Interior-point Polynomial Algorithms in Convex Programming by : Yurii Nesterov

Download or read book Interior-point Polynomial Algorithms in Convex Programming written by Yurii Nesterov and published by SIAM. This book was released on 1994-01-01 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: Specialists working in the areas of optimization, mathematical programming, or control theory will find this book invaluable for studying interior-point methods for linear and quadratic programming, polynomial-time methods for nonlinear convex programming, and efficient computational methods for control problems and variational inequalities. A background in linear algebra and mathematical programming is necessary to understand the book. The detailed proofs and lack of "numerical examples" might suggest that the book is of limited value to the reader interested in the practical aspects of convex optimization, but nothing could be further from the truth. An entire chapter is devoted to potential reduction methods precisely because of their great efficiency in practice.

Semidefinite Optimization and Convex Algebraic Geometry

Download Semidefinite Optimization and Convex Algebraic Geometry PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611972280
Total Pages : 487 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Semidefinite Optimization and Convex Algebraic Geometry by : Grigoriy Blekherman

Download or read book Semidefinite Optimization and Convex Algebraic Geometry written by Grigoriy Blekherman and published by SIAM. This book was released on 2013-03-21 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introduction to convex algebraic geometry and semidefinite optimization. For graduate students and researchers in mathematics and computer science.