Convex Analysis and Optimization in Hadamard Spaces

Download Convex Analysis and Optimization in Hadamard Spaces PDF Online Free

Author :
Publisher : Walter de Gruyter GmbH & Co KG
ISBN 13 : 3110361620
Total Pages : 194 pages
Book Rating : 4.1/5 (13 download)

DOWNLOAD NOW!


Book Synopsis Convex Analysis and Optimization in Hadamard Spaces by : Miroslav Bacak

Download or read book Convex Analysis and Optimization in Hadamard Spaces written by Miroslav Bacak and published by Walter de Gruyter GmbH & Co KG. This book was released on 2014-10-29 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past two decades, convex analysis and optimization have been developed in Hadamard spaces. This book represents a first attempt to give a systematic account on the subject. Hadamard spaces are complete geodesic spaces of nonpositive curvature. They include Hilbert spaces, Hadamard manifolds, Euclidean buildings and many other important spaces. While the role of Hadamard spaces in geometry and geometric group theory has been studied for a long time, first analytical results appeared as late as in the 1990s. Remarkably, it turns out that Hadamard spaces are appropriate for the theory of convex sets and convex functions outside of linear spaces. Since convexity underpins a large number of results in the geometry of Hadamard spaces, we believe that its systematic study is of substantial interest. Optimization methods then address various computational issues and provide us with approximation algorithms which may be useful in sciences and engineering. We present a detailed description of such an application to computational phylogenetics. The book is primarily aimed at both graduate students and researchers in analysis and optimization, but it is accessible to advanced undergraduate students as well.

Convex Analysis and Optimization

Download Convex Analysis and Optimization PDF Online Free

Author :
Publisher : Athena Scientific
ISBN 13 : 1886529450
Total Pages : 560 pages
Book Rating : 4.8/5 (865 download)

DOWNLOAD NOW!


Book Synopsis Convex Analysis and Optimization by : Dimitri Bertsekas

Download or read book Convex Analysis and Optimization written by Dimitri Bertsekas and published by Athena Scientific. This book was released on 2003-03-01 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: A uniquely pedagogical, insightful, and rigorous treatment of the analytical/geometrical foundations of optimization. The book provides a comprehensive development of convexity theory, and its rich applications in optimization, including duality, minimax/saddle point theory, Lagrange multipliers, and Lagrangian relaxation/nondifferentiable optimization. It is an excellent supplement to several of our books: Convex Optimization Theory (Athena Scientific, 2009), Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 2016), Network Optimization (Athena Scientific, 1998), and Introduction to Linear Optimization (Athena Scientific, 1997). Aside from a thorough account of convex analysis and optimization, the book aims to restructure the theory of the subject, by introducing several novel unifying lines of analysis, including: 1) A unified development of minimax theory and constrained optimization duality as special cases of duality between two simple geometrical problems. 2) A unified development of conditions for existence of solutions of convex optimization problems, conditions for the minimax equality to hold, and conditions for the absence of a duality gap in constrained optimization. 3) A unification of the major constraint qualifications allowing the use of Lagrange multipliers for nonconvex constrained optimization, using the notion of constraint pseudonormality and an enhanced form of the Fritz John necessary optimality conditions. Among its features the book: a) Develops rigorously and comprehensively the theory of convex sets and functions, in the classical tradition of Fenchel and Rockafellar b) Provides a geometric, highly visual treatment of convex and nonconvex optimization problems, including existence of solutions, optimality conditions, Lagrange multipliers, and duality c) Includes an insightful and comprehensive presentation of minimax theory and zero sum games, and its connection with duality d) Describes dual optimization, the associated computational methods, including the novel incremental subgradient methods, and applications in linear, quadratic, and integer programming e) Contains many examples, illustrations, and exercises with complete solutions (about 200 pages) posted at the publisher's web site http://www.athenasc.com/convexity.html

Introduction to Optimization and Hadamard Semidifferential Calculus, Second Edition

Download Introduction to Optimization and Hadamard Semidifferential Calculus, Second Edition PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611975964
Total Pages : 446 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Optimization and Hadamard Semidifferential Calculus, Second Edition by : Michel C. Delfour

Download or read book Introduction to Optimization and Hadamard Semidifferential Calculus, Second Edition written by Michel C. Delfour and published by SIAM. This book was released on 2019-12-19 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition provides an enhanced exposition of the long-overlooked Hadamard semidifferential calculus, first introduced in the 1920s by mathematicians Jacques Hadamard and Maurice René Fréchet. Hadamard semidifferential calculus is possibly the largest family of nondifferentiable functions that retains all the features of classical differential calculus, including the chain rule, making it a natural framework for initiating a large audience of undergraduates and non-mathematicians into the world of nondifferentiable optimization. Introduction to Optimization and Hadamard Semidifferential Calculus, Second Edition builds upon its prior edition’s foundations in Hadamard semidifferential calculus, showcasing new material linked to convex analysis and nonsmooth optimization. It presents a modern treatment of optimization and Hadamard semidifferential calculus while remaining at a level that is accessible to undergraduate students, and challenges students with exercises related to problems in such fields as engineering, mechanics, medicine, physics, and economics. Answers are supplied in Appendix B. Students of mathematics, physics, engineering, economics, and other disciplines that demand a basic knowledge of mathematical analysis and linear algebra will find this a fitting primary or companion resource for their studies. This textbook has been designed and tested for a one-term course at the undergraduate level. In its full version, it is appropriate for a first-year graduate course and as a reference.

Mathematical Programming and Game Theory

Download Mathematical Programming and Game Theory PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 981133059X
Total Pages : 234 pages
Book Rating : 4.8/5 (113 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Programming and Game Theory by : S.K. Neogy

Download or read book Mathematical Programming and Game Theory written by S.K. Neogy and published by Springer. This book was released on 2018-11-28 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses recent developments in mathematical programming and game theory, and the application of several mathematical models to problems in finance, games, economics and graph theory. All contributing authors are eminent researchers in their respective fields, from across the world. This book contains a collection of selected papers presented at the 2017 Symposium on Mathematical Programming and Game Theory at New Delhi during 9–11 January 2017. Researchers, professionals and graduate students will find the book an essential resource for current work in mathematical programming, game theory and their applications in finance, economics and graph theory. The symposium provides a forum for new developments and applications of mathematical programming and game theory as well as an excellent opportunity to disseminate the latest major achievements and to explore new directions and perspectives.

Processing, Analyzing and Learning of Images, Shapes, and Forms: Part 2

Download Processing, Analyzing and Learning of Images, Shapes, and Forms: Part 2 PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0444641416
Total Pages : 706 pages
Book Rating : 4.4/5 (446 download)

DOWNLOAD NOW!


Book Synopsis Processing, Analyzing and Learning of Images, Shapes, and Forms: Part 2 by :

Download or read book Processing, Analyzing and Learning of Images, Shapes, and Forms: Part 2 written by and published by Elsevier. This book was released on 2019-10-16 with total page 706 pages. Available in PDF, EPUB and Kindle. Book excerpt: Processing, Analyzing and Learning of Images, Shapes, and Forms: Part 2, Volume 20, surveys the contemporary developments relating to the analysis and learning of images, shapes and forms, covering mathematical models and quick computational techniques. Chapter cover Alternating Diffusion: A Geometric Approach for Sensor Fusion, Generating Structured TV-based Priors and Associated Primal-dual Methods, Graph-based Optimization Approaches for Machine Learning, Uncertainty Quantification and Networks, Extrinsic Shape Analysis from Boundary Representations, Efficient Numerical Methods for Gradient Flows and Phase-field Models, Recent Advances in Denoising of Manifold-Valued Images, Optimal Registration of Images, Surfaces and Shapes, and much more. - Covers contemporary developments relating to the analysis and learning of images, shapes and forms - Presents mathematical models and quick computational techniques relating to the topic - Provides broad coverage, with sample chapters presenting content on Alternating Diffusion and Generating Structured TV-based Priors and Associated Primal-dual Methods

Convex and Set-Valued Analysis

Download Convex and Set-Valued Analysis PDF Online Free

Author :
Publisher : Walter de Gruyter GmbH & Co KG
ISBN 13 : 3110460300
Total Pages : 209 pages
Book Rating : 4.1/5 (14 download)

DOWNLOAD NOW!


Book Synopsis Convex and Set-Valued Analysis by : Aram V. Arutyunov

Download or read book Convex and Set-Valued Analysis written by Aram V. Arutyunov and published by Walter de Gruyter GmbH & Co KG. This book was released on 2016-12-05 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is devoted to a compressed and self-contained exposition of two important parts of contemporary mathematics: convex and set-valued analysis. In the first part, properties of convex sets, the theory of separation, convex functions and their differentiability, properties of convex cones in finite- and infinite-dimensional spaces are discussed. The second part covers some important parts of set-valued analysis. There the properties of the Hausdorff metric and various continuity concepts of set-valued maps are considered. The great attention is paid also to measurable set-valued functions, continuous, Lipschitz and some special types of selections, fixed point and coincidence theorems, covering set-valued maps, topological degree theory and differential inclusions. Contents: Preface Part I: Convex analysis Convex sets and their properties The convex hull of a set. The interior of convex sets The affine hull of sets. The relative interior of convex sets Separation theorems for convex sets Convex functions Closedness, boundedness, continuity, and Lipschitz property of convex functions Conjugate functions Support functions Differentiability of convex functions and the subdifferential Convex cones A little more about convex cones in infinite-dimensional spaces A problem of linear programming More about convex sets and convex hulls Part II: Set-valued analysis Introduction to the theory of topological and metric spaces The Hausdorff metric and the distance between sets Some fine properties of the Hausdorff metric Set-valued maps. Upper semicontinuous and lower semicontinuous set-valued maps A base of topology of the spaceHc(X) Measurable set-valued maps. Measurable selections and measurable choice theorems The superposition set-valued operator The Michael theorem and continuous selections. Lipschitz selections. Single-valued approximations Special selections of set-valued maps Differential inclusions Fixed points and coincidences of maps in metric spaces Stability of coincidence points and properties of covering maps Topological degree and fixed points of set-valued maps in Banach spaces Existence results for differential inclusions via the fixed point method Notation Bibliography Index

Solutions of Fixed Point Problems with Computational Errors

Download Solutions of Fixed Point Problems with Computational Errors PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031508793
Total Pages : 392 pages
Book Rating : 4.0/5 (315 download)

DOWNLOAD NOW!


Book Synopsis Solutions of Fixed Point Problems with Computational Errors by : Alexander J. Zaslavski

Download or read book Solutions of Fixed Point Problems with Computational Errors written by Alexander J. Zaslavski and published by Springer Nature. This book was released on with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Algorithms for Solving Common Fixed Point Problems

Download Algorithms for Solving Common Fixed Point Problems PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319774379
Total Pages : 320 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Algorithms for Solving Common Fixed Point Problems by : Alexander J. Zaslavski

Download or read book Algorithms for Solving Common Fixed Point Problems written by Alexander J. Zaslavski and published by Springer. This book was released on 2018-05-02 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book details approximate solutions to common fixed point problems and convex feasibility problems in the presence of perturbations. Convex feasibility problems search for a common point of a finite collection of subsets in a Hilbert space; common fixed point problems pursue a common fixed point of a finite collection of self-mappings in a Hilbert space. A variety of algorithms are considered in this book for solving both types of problems, the study of which has fueled a rapidly growing area of research. This monograph is timely and highlights the numerous applications to engineering, computed tomography, and radiation therapy planning. Totaling eight chapters, this book begins with an introduction to foundational material and moves on to examine iterative methods in metric spaces. The dynamic string-averaging methods for common fixed point problems in normed space are analyzed in Chapter 3. Dynamic string methods, for common fixed point problems in a metric space are introduced and discussed in Chapter 4. Chapter 5 is devoted to the convergence of an abstract version of the algorithm which has been called component-averaged row projections (CARP). Chapter 6 studies a proximal algorithm for finding a common zero of a family of maximal monotone operators. Chapter 7 extends the results of Chapter 6 for a dynamic string-averaging version of the proximal algorithm. In Chapters 8 subgradient projections algorithms for convex feasibility problems are examined for infinite dimensional Hilbert spaces.

Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging

Download Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030986616
Total Pages : 1981 pages
Book Rating : 4.0/5 (39 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging by : Ke Chen

Download or read book Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging written by Ke Chen and published by Springer Nature. This book was released on 2023-02-24 with total page 1981 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook gathers together the state of the art on mathematical models and algorithms for imaging and vision. Its emphasis lies on rigorous mathematical methods, which represent the optimal solutions to a class of imaging and vision problems, and on effective algorithms, which are necessary for the methods to be translated to practical use in various applications. Viewing discrete images as data sampled from functional surfaces enables the use of advanced tools from calculus, functions and calculus of variations, and nonlinear optimization, and provides the basis of high-resolution imaging through geometry and variational models. Besides, optimization naturally connects traditional model-driven approaches to the emerging data-driven approaches of machine and deep learning. No other framework can provide comparable accuracy and precision to imaging and vision. Written by leading researchers in imaging and vision, the chapters in this handbook all start with gentle introductions, which make this work accessible to graduate students. For newcomers to the field, the book provides a comprehensive and fast-track introduction to the content, to save time and get on with tackling new and emerging challenges. For researchers, exposure to the state of the art of research works leads to an overall view of the entire field so as to guide new research directions and avoid pitfalls in moving the field forward and looking into the next decades of imaging and information services. This work can greatly benefit graduate students, researchers, and practitioners in imaging and vision; applied mathematicians; medical imagers; engineers; and computer scientists.

Convex Analysis and Nonlinear Optimization

Download Convex Analysis and Nonlinear Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387312560
Total Pages : 316 pages
Book Rating : 4.3/5 (873 download)

DOWNLOAD NOW!


Book Synopsis Convex Analysis and Nonlinear Optimization by : Jonathan Borwein

Download or read book Convex Analysis and Nonlinear Optimization written by Jonathan Borwein and published by Springer Science & Business Media. This book was released on 2010-05-05 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization is a rich and thriving mathematical discipline, and the underlying theory of current computational optimization techniques grows ever more sophisticated. This book aims to provide a concise, accessible account of convex analysis and its applications and extensions, for a broad audience. Each section concludes with an often extensive set of optional exercises. This new edition adds material on semismooth optimization, as well as several new proofs.

Approximate Fixed Points of Nonexpansive Mappings

Download Approximate Fixed Points of Nonexpansive Mappings PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031707109
Total Pages : 535 pages
Book Rating : 4.0/5 (317 download)

DOWNLOAD NOW!


Book Synopsis Approximate Fixed Points of Nonexpansive Mappings by : Alexander J. Zaslavski

Download or read book Approximate Fixed Points of Nonexpansive Mappings written by Alexander J. Zaslavski and published by Springer Nature. This book was released on with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Advances in Metric Fixed Point Theory and Applications

Download Advances in Metric Fixed Point Theory and Applications PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9813366478
Total Pages : 503 pages
Book Rating : 4.8/5 (133 download)

DOWNLOAD NOW!


Book Synopsis Advances in Metric Fixed Point Theory and Applications by : Yeol Je Cho

Download or read book Advances in Metric Fixed Point Theory and Applications written by Yeol Je Cho and published by Springer Nature. This book was released on 2021-06-05 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects papers on major topics in fixed point theory and its applications. Each chapter is accompanied by basic notions, mathematical preliminaries and proofs of the main results. The book discusses common fixed point theory, convergence theorems, split variational inclusion problems and fixed point problems for asymptotically nonexpansive semigroups; fixed point property and almost fixed point property in digital spaces, nonexpansive semigroups over CAT(κ) spaces, measures of noncompactness, integral equations, the study of fixed points that are zeros of a given function, best proximity point theory, monotone mappings in modular function spaces, fuzzy contractive mappings, ordered hyperbolic metric spaces, generalized contractions in b-metric spaces, multi-tupled fixed points, functional equations in dynamic programming and Picard operators. This book addresses the mathematical community working with methods and tools of nonlinear analysis. It also serves as a reference, source for examples and new approaches associated with fixed point theory and its applications for a wide audience including graduate students and researchers.

New Trends in Analysis and Geometry

Download New Trends in Analysis and Geometry PDF Online Free

Author :
Publisher : Cambridge Scholars Publishing
ISBN 13 : 1527546128
Total Pages : 401 pages
Book Rating : 4.5/5 (275 download)

DOWNLOAD NOW!


Book Synopsis New Trends in Analysis and Geometry by : Mohamed A. Khamsi

Download or read book New Trends in Analysis and Geometry written by Mohamed A. Khamsi and published by Cambridge Scholars Publishing. This book was released on 2020-01-24 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique mathematical volume brings together geometers, analysts, differential equations specialists and graph-theorists to provide a glimpse on recent mathematical trends whose commonalities have hitherto remained, for the most part, unnoticed. The applied mathematician will be pleasantly surprised with the interpretation of a voting system in terms of the fixed points of a mapping given in the book, as much as the classical analyst will be enthusiastic to find detailed discussions on the generalization of the notion of metric space, in which the metric takes values on an abstract monoid. Classical themes on fixed point theory are adapted to the diverse setting of graph theory, thus uncovering a set of tools whose power and versatility will be appreciated by mathematicians working on either area. The volume also includes recent results on variable exponent spaces which reveal much-needed connections with partial differential equations, while the incipient field of variational inequalities on manifolds, also explored here, will be of interest to researchers from a variety of fields.

Comparison Finsler Geometry

Download Comparison Finsler Geometry PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030806502
Total Pages : 324 pages
Book Rating : 4.0/5 (38 download)

DOWNLOAD NOW!


Book Synopsis Comparison Finsler Geometry by : Shin-ichi Ohta

Download or read book Comparison Finsler Geometry written by Shin-ichi Ohta and published by Springer Nature. This book was released on 2021-10-09 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents recent developments in comparison geometry and geometric analysis on Finsler manifolds. Generalizing the weighted Ricci curvature into the Finsler setting, the author systematically derives the fundamental geometric and analytic inequalities in the Finsler context. Relying only upon knowledge of differentiable manifolds, this treatment offers an accessible entry point to Finsler geometry for readers new to the area. Divided into three parts, the book begins by establishing the fundamentals of Finsler geometry, including Jacobi fields and curvature tensors, variation formulas for arc length, and some classical comparison theorems. Part II goes on to introduce the weighted Ricci curvature, nonlinear Laplacian, and nonlinear heat flow on Finsler manifolds. These tools allow the derivation of the Bochner–Weitzenböck formula and the corresponding Bochner inequality, gradient estimates, Bakry–Ledoux’s Gaussian isoperimetric inequality, and functional inequalities in the Finsler setting. Part III comprises advanced topics: a generalization of the classical Cheeger–Gromoll splitting theorem, the curvature-dimension condition, and the needle decomposition. Throughout, geometric descriptions illuminate the intuition behind the results, while exercises provide opportunities for active engagement. Comparison Finsler Geometry offers an ideal gateway to the study of Finsler manifolds for graduate students and researchers. Knowledge of differentiable manifold theory is assumed, along with the fundamentals of functional analysis. Familiarity with Riemannian geometry is not required, though readers with a background in the area will find their insights are readily transferrable.

Scale Space and Variational Methods in Computer Vision

Download Scale Space and Variational Methods in Computer Vision PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 303022368X
Total Pages : 574 pages
Book Rating : 4.0/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Scale Space and Variational Methods in Computer Vision by : Jan Lellmann

Download or read book Scale Space and Variational Methods in Computer Vision written by Jan Lellmann and published by Springer. This book was released on 2019-06-21 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the 7th International Conference on Scale Space and Variational Methods in Computer Vision, SSVM 2019, held in Hofgeismar, Germany, in June/July 2019. The 44 papers included in this volume were carefully reviewed and selected for inclusion in this book. They were organized in topical sections named: 3D vision and feature analysis; inpainting, interpolation and compression; inverse problems in imaging; optimization methods in imaging; PDEs and level-set methods; registration and reconstruction; scale-space methods; segmentation and labeling; and variational methods.

Handbook of Variational Methods for Nonlinear Geometric Data

Download Handbook of Variational Methods for Nonlinear Geometric Data PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030313514
Total Pages : 703 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Variational Methods for Nonlinear Geometric Data by : Philipp Grohs

Download or read book Handbook of Variational Methods for Nonlinear Geometric Data written by Philipp Grohs and published by Springer Nature. This book was released on 2020-04-03 with total page 703 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers different, current research directions in the context of variational methods for non-linear geometric data. Each chapter is authored by leading experts in the respective discipline and provides an introduction, an overview and a description of the current state of the art. Non-linear geometric data arises in various applications in science and engineering. Examples of nonlinear data spaces are diverse and include, for instance, nonlinear spaces of matrices, spaces of curves, shapes as well as manifolds of probability measures. Applications can be found in biology, medicine, product engineering, geography and computer vision for instance. Variational methods on the other hand have evolved to being amongst the most powerful tools for applied mathematics. They involve techniques from various branches of mathematics such as statistics, modeling, optimization, numerical mathematics and analysis. The vast majority of research on variational methods, however, is focused on data in linear spaces. Variational methods for non-linear data is currently an emerging research topic. As a result, and since such methods involve various branches of mathematics, there is a plethora of different, recent approaches dealing with different aspects of variational methods for nonlinear geometric data. Research results are rather scattered and appear in journals of different mathematical communities. The main purpose of the book is to account for that by providing, for the first time, a comprehensive collection of different research directions and existing approaches in this context. It is organized in a way that leading researchers from the different fields provide an introductory overview of recent research directions in their respective discipline. As such, the book is a unique reference work for both newcomers in the field of variational methods for non-linear geometric data, as well as for established experts that aim at to exploit new research directions or collaborations. Chapter 9 of this book is available open access under a CC BY 4.0 license at link.springer.com.

Geometric Properties for Parabolic and Elliptic PDE's

Download Geometric Properties for Parabolic and Elliptic PDE's PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030733637
Total Pages : 303 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Geometric Properties for Parabolic and Elliptic PDE's by : Vincenzo Ferone

Download or read book Geometric Properties for Parabolic and Elliptic PDE's written by Vincenzo Ferone and published by Springer Nature. This book was released on 2021-06-12 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the contributions resulting from the 6th Italian-Japanese workshop on Geometric Properties for Parabolic and Elliptic PDEs, which was held in Cortona (Italy) during the week of May 20–24, 2019. This book will be of great interest for the mathematical community and in particular for researchers studying parabolic and elliptic PDEs. It covers many different fields of current research as follows: convexity of solutions to PDEs, qualitative properties of solutions to parabolic equations, overdetermined problems, inverse problems, Brunn-Minkowski inequalities, Sobolev inequalities, and isoperimetric inequalities.