Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Conformal Geometry
Download Conformal Geometry full books in PDF, epub, and Kindle. Read online Conformal Geometry ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Computational Conformal Geometry by : Xianfeng David Gu
Download or read book Computational Conformal Geometry written by Xianfeng David Gu and published by . This book was released on 2008 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Topological, Differential and Conformal Geometry of Surfaces by : Norbert A'Campo
Download or read book Topological, Differential and Conformal Geometry of Surfaces written by Norbert A'Campo and published by Springer Nature. This book was released on 2021-10-27 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the main geometric structures that are carried by compact surfaces, with an emphasis on the classical theory of Riemann surfaces. It first covers the prerequisites, including the basics of differential forms, the Poincaré Lemma, the Morse Lemma, the classification of compact connected oriented surfaces, Stokes’ Theorem, fixed point theorems and rigidity theorems. There is also a novel presentation of planar hyperbolic geometry. Moving on to more advanced concepts, it covers topics such as Riemannian metrics, the isometric torsion-free connection on vector fields, the Ansatz of Koszul, the Gauss–Bonnet Theorem, and integrability. These concepts are then used for the study of Riemann surfaces. One of the focal points is the Uniformization Theorem for compact surfaces, an elementary proof of which is given via a property of the energy functional. Among numerous other results, there is also a proof of Chow’s Theorem on compact holomorphic submanifolds in complex projective spaces. Based on lecture courses given by the author, the book will be accessible to undergraduates and graduates interested in the analytic theory of Riemann surfaces.
Book Synopsis Conformal Groups in Geometry and Spin Structures by : Pierre Anglès
Download or read book Conformal Groups in Geometry and Spin Structures written by Pierre Anglès and published by Springer Science & Business Media. This book was released on 2007-10-16 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a self-contained overview of the role of conformal groups in geometry and mathematical physics. It features a careful development of the material, from the basics of Clifford algebras to more advanced topics. Each chapter covers a specific aspect of conformal groups and conformal spin geometry. All major concepts are introduced and followed by detailed descriptions and definitions, and a comprehensive bibliography and index round out the work. Rich in exercises that are accompanied by full proofs and many hints, the book will be ideal as a course text or self-study volume for senior undergraduates and graduate students.
Book Synopsis Conformal Geometry of Surfaces in S4 and Quaternions by : Francis E. Burstall
Download or read book Conformal Geometry of Surfaces in S4 and Quaternions written by Francis E. Burstall and published by Springer Science & Business Media. This book was released on 2002-03-05 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: The conformal geometry of surfaces recently developed by the authors leads to a unified understanding of algebraic curve theory and the geometry of surfaces on the basis of a quaternionic-valued function theory. The book offers an elementary introduction to the subject but takes the reader to rather advanced topics. Willmore surfaces in the foursphere, their Bcklund and Darboux transforms are covered, and a new proof of the classification of Willmore spheres is given.
Book Synopsis Conformal Maps And Geometry by : Dmitry Beliaev
Download or read book Conformal Maps And Geometry written by Dmitry Beliaev and published by World Scientific. This book was released on 2019-11-19 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'I very much enjoyed reading this book … Each chapter comes with well thought-out exercises, solutions to which are given at the end of the chapter. Conformal Maps and Geometry presents key topics in geometric function theory and the theory of univalent functions, and also prepares the reader to progress to study the SLE. It succeeds admirably on both counts.'MathSciNetGeometric function theory is one of the most interesting parts of complex analysis, an area that has become increasingly relevant as a key feature in the theory of Schramm-Loewner evolution.Though Riemann mapping theorem is frequently explored, there are few texts that discuss general theory of univalent maps, conformal invariants, and Loewner evolution. This textbook provides an accessible foundation of the theory of conformal maps and their connections with geometry.It offers a unique view of the field, as it is one of the first to discuss general theory of univalent maps at a graduate level, while introducing more complex theories of conformal invariants and extremal lengths. Conformal Maps and Geometry is an ideal resource for graduate courses in Complex Analysis or as an analytic prerequisite to study the theory of Schramm-Loewner evolution.
Book Synopsis Two-Dimensional Conformal Geometry and Vertex Operator Algebras by : Yi-Zhi Huang
Download or read book Two-Dimensional Conformal Geometry and Vertex Operator Algebras written by Yi-Zhi Huang and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of vertex operator algebras and their representations has been showing its power in the solution of concrete mathematical problems and in the understanding of conceptual but subtle mathematical and physical struc- tures of conformal field theories. Much of the recent progress has deep connec- tions with complex analysis and conformal geometry. Future developments, especially constructions and studies of higher-genus theories, will need a solid geometric theory of vertex operator algebras. Back in 1986, Manin already observed in Man) that the quantum theory of (super )strings existed (in some sense) in two entirely different mathematical fields. Under canonical quantization this theory appeared to a mathematician as the representation theories of the Heisenberg, Vir as oro and affine Kac- Moody algebras and their superextensions. Quantization with the help of the Polyakov path integral led on the other hand to the analytic theory of algebraic (super ) curves and their moduli spaces, to invariants of the type of the analytic curvature, and so on.He pointed out further that establishing direct mathematical connections between these two forms of a single theory was a big and important problem. On the one hand, the theory of vertex operator algebras and their repre- sentations unifies (and considerably extends) the representation theories of the Heisenberg, Virasoro and Kac-Moody algebras and their superextensions.
Book Synopsis Locally Conformal Kähler Geometry by : Sorin Dragomir
Download or read book Locally Conformal Kähler Geometry written by Sorin Dragomir and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: . E C, 0 1'1 1, and n E Z, n ~ 2. Let~.. be the O-dimensional Lie n group generated by the transformation z ~ >.z, z E C - {a}. Then (cf.
Download or read book Conformal Geometry written by Miao Jin and published by Springer. This book was released on 2018-04-10 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an essential overview of computational conformal geometry applied to fundamental problems in specific engineering fields. It introduces readers to conformal geometry theory and discusses implementation issues from an engineering perspective. The respective chapters explore fundamental problems in specific fields of application, and detail how computational conformal geometric methods can be used to solve them in a theoretically elegant and computationally efficient way. The fields covered include computer graphics, computer vision, geometric modeling, medical imaging, and wireless sensor networks. Each chapter concludes with a summary of the material covered and suggestions for further reading, and numerous illustrations and computational algorithms complement the text. The book draws on courses given by the authors at the University of Louisiana at Lafayette, the State University of New York at Stony Brook, and Tsinghua University, and will be of interest to senior undergraduates, graduates and researchers in computer science, applied mathematics, and engineering.
Book Synopsis Energy of Knots and Conformal Geometry by : Jun O'Hara
Download or read book Energy of Knots and Conformal Geometry written by Jun O'Hara and published by World Scientific. This book was released on 2003 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Energy of knots is a theory that was introduced to create a "canonical configuration" of a knot - a beautiful knot which represents its knot type. This book introduces several kinds of energies, and studies the problem of whether or not there is a "canonical configuration" of a knot in each knot type. It also considers this problem in the context of conformal geometry. The energies presented in the book are defined geometrically. They measure the complexity of embeddings and have applications to physical knotting and unknotting thorough numerical experiments.
Book Synopsis Conformal Geometry of Discrete Groups and Manifolds by : Boris Nikolaevich Apanasov
Download or read book Conformal Geometry of Discrete Groups and Manifolds written by Boris Nikolaevich Apanasov and published by Walter de Gruyter. This book was released on 2000 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: No detailed description available for "Conformal Geometry of Discrete Groups and Manifolds".
Book Synopsis Recent Progress in Conformal Geometry by : Abbas Bahri
Download or read book Recent Progress in Conformal Geometry written by Abbas Bahri and published by World Scientific. This book was released on 2007 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a new front of research in conformal geometry, on sign-changing Yamabe-type problems and contact form geometry in particular. New ground is broken with the establishment of a Morse lemma at infinity for sign-changing Yamabe-type problems. This family of problems, thought to be out of reach a few years ago, becomes a family of problems which can be studied: the book lays the foundation for a program of research in this direction.In contact form geometry, a cousin of symplectic geometry, the authors prove a fundamental result of compactness in a variational problem on Legrendrian curves, which allows one to define a homology associated to a contact structure and a vector field of its kernel on a three-dimensional manifold. The homology is invariant under deformation of the contact form, and can be read on a sub-Morse complex of the Morse complex of the variational problem built with the periodic orbits of the Reeb vector-field. This book introduces, therefore, a practical tool in the field, and this homology becomes computable.
Book Synopsis Conformal Representation by : Constantin Caratheodory
Download or read book Conformal Representation written by Constantin Caratheodory and published by Courier Corporation. This book was released on 1998-01-01 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive introduction discusses the Möbius transformation, non-Euclidean geometry, elementary transformations, Schwarz's Lemma, transformation of the frontier and closed surfaces, and the general theorem of uniformization. Detailed proofs.
Book Synopsis Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces by : Richard Courant
Download or read book Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces written by Richard Courant and published by Courier Corporation. This book was released on 2005-01-01 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originally published: New York: Interscience Publishers, 1950, in series: Pure and applied mathematics (Interscience Publishers); v. 3.
Book Synopsis Inversion Theory and Conformal Mapping by : David E. Blair
Download or read book Inversion Theory and Conformal Mapping written by David E. Blair and published by American Mathematical Soc.. This book was released on 2000-08-17 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is rarely taught in an undergraduate or even graduate curriculum that the only conformal maps in Euclidean space of dimension greater than two are those generated by similarities and inversions in spheres. This is in stark contrast to the wealth of conformal maps in the plane. The principal aim of this text is to give a treatment of this paucity of conformal maps in higher dimensions. The exposition includes both an analytic proof in general dimension and a differential-geometric proof in dimension three. For completeness, enough complex analysis is developed to prove the abundance of conformal maps in the plane. In addition, the book develops inversion theory as a subject, along with the auxiliary theme of circle-preserving maps. A particular feature is the inclusion of a paper by Caratheodory with the remarkable result that any circle-preserving transformation is necessarily a Mobius transformation, not even the continuity of the transformation is assumed. The text is at the level of advanced undergraduates and is suitable for a capstone course, topics course, senior seminar or independent study. Students and readers with university courses in differential geometry or complex analysis bring with them background to build on, but such courses are not essential prerequisites.
Book Synopsis Differential Geometry of Varieties with Degenerate Gauss Maps by : Maks A. Akivis
Download or read book Differential Geometry of Varieties with Degenerate Gauss Maps written by Maks A. Akivis and published by Springer Science & Business Media. This book was released on 2006-04-18 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book surveys the differential geometry of varieties with degenerate Gauss maps, using moving frames and exterior differential forms as well as tensor methods. The authors illustrate the structure of varieties with degenerate Gauss maps, determine the singular points and singular varieties, find focal images and construct a classification of the varieties with degenerate Gauss maps.
Book Synopsis Conformal Symmetry Breaking Operators for Differential Forms on Spheres by : Toshiyuki Kobayashi
Download or read book Conformal Symmetry Breaking Operators for Differential Forms on Spheres written by Toshiyuki Kobayashi and published by Springer. This book was released on 2016-10-11 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work is the first systematic study of all possible conformally covariant differential operators transforming differential forms on a Riemannian manifold X into those on a submanifold Y with focus on the model space (X, Y) = (Sn, Sn-1). The authors give a complete classification of all such conformally covariant differential operators, and find their explicit formulæ in the flat coordinates in terms of basic operators in differential geometry and classical hypergeometric polynomials. Resulting families of operators are natural generalizations of the Rankin–Cohen brackets for modular forms and Juhl's operators from conformal holography. The matrix-valued factorization identities among all possible combinations of conformally covariant differential operators are also established. The main machinery of the proof relies on the "F-method" recently introduced and developed by the authors. It is a general method to construct intertwining operators between C∞-induced representations or to find singular vectors of Verma modules in the context of branching rules, as solutions to differential equations on the Fourier transform side. The book gives a new extension of the F-method to the matrix-valued case in the general setting, which could be applied to other problems as well. This book offers a self-contained introduction to the analysis of symmetry breaking operators for infinite-dimensional representations of reductive Lie groups. This feature will be helpful for active scientists and accessible to graduate students and young researchers in differential geometry, representation theory, and theoretical physics.
Download or read book Geometric Analysis written by Jingyi Chen and published by Springer Nature. This book was released on 2020-04-10 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited volume has a two-fold purpose. First, comprehensive survey articles provide a way for beginners to ease into the corresponding sub-fields. These are then supplemented by original works that give the more advanced readers a glimpse of the current research in geometric analysis and related PDEs. The book is of significant interest for researchers, including advanced Ph.D. students, working in geometric analysis. Readers who have a secondary interest in geometric analysis will benefit from the survey articles. The results included in this book will stimulate further advances in the subjects: geometric analysis, including complex differential geometry, symplectic geometry, PDEs with a geometric origin, and geometry related to topology. Contributions by Claudio Arezzo, Alberto Della Vedova, Werner Ballmann, Henrik Matthiesen, Panagiotis Polymerakis, Sun-Yung A. Chang, Zheng-Chao Han, Paul Yang, Tobias Holck Colding, William P. Minicozzi II, Panagiotis Dimakis, Richard Melrose, Akito Futaki, Hajime Ono, Jiyuan Han, Jeff A. Viaclovsky, Bruce Kleiner, John Lott, Sławomir Kołodziej, Ngoc Cuong Nguyen, Chi Li, Yuchen Liu, Chenyang Xu, YanYan Li, Luc Nguyen, Bo Wang, Shiguang Ma, Jie Qing, Xiaonan Ma, Sean Timothy Paul, Kyriakos Sergiou, Tristan Rivière, Yanir A. Rubinstein, Natasa Sesum, Jian Song, Jeffrey Streets, Neil S. Trudinger, Yu Yuan, Weiping Zhang, Xiaohua Zhu and Aleksey Zinger.