Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Confidence Intervals For Variance Components In Two Components Mixed Models
Download Confidence Intervals For Variance Components In Two Components Mixed Models full books in PDF, epub, and Kindle. Read online Confidence Intervals For Variance Components In Two Components Mixed Models ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Variance Components by : Poduri S.R.S. Rao
Download or read book Variance Components written by Poduri S.R.S. Rao and published by CRC Press. This book was released on 1997-06-01 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: Variance Components Estimation deals with the evaluation of the variation between observable data or classes of data. This is an up-to-date, comprehensive work that is both theoretical and applied. Topics include ML and REML methods of estimation; Steepest-Acent, Newton-Raphson, scoring, and EM algorithms; MINQUE and MIVQUE, confidence intervals for variance components and their ratios; Bayesian approaches and hierarchical models; mixed models for longitudinal data; repeated measures and multivariate observations; as well as non-linear and generalized linear models with random effects.
Book Synopsis Confidence Intervals on Variance Components by : Richard K. Burdick
Download or read book Confidence Intervals on Variance Components written by Richard K. Burdick and published by CRC Press. This book was released on 1992-02-28 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summarizes information scattered in the technical literature on a subject too new to be included in most textbooks, but which is of interest to statisticians, and those who use statistics in science and education, at an advanced undergraduate or higher level. Overviews recent research on constructin
Book Synopsis Variance Components by : Shayle R. Searle
Download or read book Variance Components written by Shayle R. Searle and published by John Wiley & Sons. This book was released on 2009-09-25 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. ". . .Variance Components is an excellent book. It is organized and well written, and provides many references to a variety of topics. I recommend it to anyone with interest in linear models." —Journal of the American Statistical Association "This book provides a broad coverage of methods for estimating variance components which appeal to students and research workers . . . The authors make an outstanding contribution to teaching and research in the field of variance component estimation." —Mathematical Reviews "The authors have done an excellent job in collecting materials on a broad range of topics. Readers will indeed gain from using this book . . . I must say that the authors have done a commendable job in their scholarly presentation." —Technometrics This book focuses on summarizing the variability of statistical data known as the analysis of variance table. Penned in a readable style, it provides an up-to-date treatment of research in the area. The book begins with the history of analysis of variance and continues with discussions of balanced data, analysis of variance for unbalanced data, predictions of random variables, hierarchical models and Bayesian estimation, binary and discrete data, and the dispersion mean model.
Book Synopsis Linear and Generalized Linear Mixed Models and Their Applications by : Jiming Jiang
Download or read book Linear and Generalized Linear Mixed Models and Their Applications written by Jiming Jiang and published by Springer Science & Business Media. This book was released on 2007-05-30 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers two major classes of mixed effects models, linear mixed models and generalized linear mixed models. It presents an up-to-date account of theory and methods in analysis of these models as well as their applications in various fields. The book offers a systematic approach to inference about non-Gaussian linear mixed models. Furthermore, it includes recently developed methods, such as mixed model diagnostics, mixed model selection, and jackknife method in the context of mixed models. The book is aimed at students, researchers and other practitioners who are interested in using mixed models for statistical data analysis.
Book Synopsis Analysis of Variance for Random Models, Volume 2: Unbalanced Data by : Hardeo Sahai
Download or read book Analysis of Variance for Random Models, Volume 2: Unbalanced Data written by Hardeo Sahai and published by Springer Science & Business Media. This book was released on 2007-07-03 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: Systematic treatment of the commonly employed crossed and nested classification models used in analysis of variance designs with a detailed and thorough discussion of certain random effects models not commonly found in texts at the introductory or intermediate level. It also includes numerical examples to analyze data from a wide variety of disciplines as well as any worked examples containing computer outputs from standard software packages such as SAS, SPSS, and BMDP for each numerical example.
Book Synopsis Genetic Data Analysis for Plant and Animal Breeding by : Fikret Isik
Download or read book Genetic Data Analysis for Plant and Animal Breeding written by Fikret Isik and published by Springer. This book was released on 2017-09-09 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book fills the gap between textbooks of quantitative genetic theory, and software manuals that provide details on analytical methods but little context or perspective on which methods may be most appropriate for a particular application. Accordingly this book is composed of two sections. The first section (Chapters 1 to 8) covers topics of classical phenotypic data analysis for prediction of breeding values in animal and plant breeding programs. In the second section (Chapters 9 to 13) we provide the concept and overall review of available tools for using DNA markers for predictions of genetic merits in breeding populations. With advances in DNA sequencing technologies, genomic data, especially single nucleotide polymorphism (SNP) markers, have become available for animal and plant breeding programs in recent years. Analysis of DNA markers for prediction of genetic merit is a relatively new and active research area. The algorithms and software to implement these algorithms are changing rapidly. This section represents state-of-the-art knowledge on the tools and technologies available for genetic analysis of plants and animals. However, readers should be aware that the methods or statistical packages covered here may not be available or they might be out of date in a few years. Ultimately the book is intended for professional breeders interested in utilizing these tools and approaches in their breeding programs. Lastly, we anticipate the usage of this volume for advanced level graduate courses in agricultural and breeding courses.
Book Synopsis Analysis of Variance for Random Models by : Hardeo Sahai
Download or read book Analysis of Variance for Random Models written by Hardeo Sahai and published by Springer Science & Business Media. This book was released on 2004-05-27 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analysis of variance (ANOVA) models have become widely used tools and play a fundamental role in much of the application of statistics today. In particular, ANOVA models involving random effects have found widespread application to experimental design in a variety of fields requiring measurements of variance, including agriculture, biology, animal breeding, applied genetics, econometrics, quality control, medicine, engineering, and social sciences. This two-volume work is a comprehensive presentation of different methods and techniques for point estimation, interval estimation, and tests of hypotheses for linear models involving random effects. Both Bayesian and repeated sampling procedures are considered. Volume I examines models with balanced data (orthogonal models); Volume II studies models with unbalanced data (nonorthogonal models). Features and Topics: * Systematic treatment of the commonly employed crossed and nested classification models used in analysis of variance designs * Detailed and thorough discussion of certain random effects models not commonly found in texts at the introductory or intermediate level * Numerical examples to analyze data from a wide variety of disciplines * Many worked examples containing computer outputs from standard software packages such as SAS, SPSS, and BMDP for each numerical example * Extensive exercise sets at the end of each chapter * Numerous appendices with background reference concepts, terms, and results * Balanced coverage of theory, methods, and practical applications * Complete citations of important and related works at the end of each chapter, as well as an extensive general bibliography Accessible to readers with only a modest mathematical and statistical background, the work will appeal to a broad audience of students, researchers, and practitioners in the mathematical, life, social, and engineering sciences. It may be used as a textbook in upper-level undergraduate and graduate courses, or as a reference for readers interested in the use of random effects models for data analysis.
Book Synopsis Univariate and Multivariate General Linear Models by : Kevin Kim
Download or read book Univariate and Multivariate General Linear Models written by Kevin Kim and published by CRC Press. This book was released on 2006-10-11 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reviewing the theory of the general linear model (GLM) using a general framework, Univariate and Multivariate General Linear Models: Theory and Applications with SAS, Second Edition presents analyses of simple and complex models, both univariate and multivariate, that employ data sets from a variety of disciplines, such as the social and behavioral sciences. With revised examples that include options available using SAS 9.0, this expanded edition divides theory from applications within each chapter. Following an overview of the GLM, the book introduces unrestricted GLMs to analyze multiple regression and ANOVA designs as well as restricted GLMs to study ANCOVA designs and repeated measurement designs. Extensions of these concepts include GLMs with heteroscedastic errors that encompass weighted least squares regression and categorical data analysis, and multivariate GLMs that cover multivariate regression analysis, MANOVA, MANCOVA, and repeated measurement data analyses. The book also analyzes double multivariate linear, growth curve, seeming unrelated regression (SUR), restricted GMANOVA, and hierarchical linear models. New to the Second Edition Two chapters on finite intersection tests and power analysis that illustrates the experimental GLMPOWER procedure Expanded theory of unrestricted general linear, multivariate general linear, SUR, and restricted GMANOVA models to comprise recent developments Expanded material on missing data to include multiple imputation and the EM algorithm Applications of MI, MIANALYZE, TRANSREG, and CALIS procedures A practical introduction to GLMs, Univariate and Multivariate General Linear Models demonstrates how to fully grasp the generality of GLMs by discussing them within a general framework.
Book Synopsis Generalized Inference in Repeated Measures by : Samaradasa Weerahandi
Download or read book Generalized Inference in Repeated Measures written by Samaradasa Weerahandi and published by John Wiley & Sons. This book was released on 2004-08-24 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete guide to powerful and practical statistical modeling using MANOVA Numerous statistical applications are time dependent. Virtually all biomedical, pharmaceutical, and industrial experiments demand repeated measurements over time. The same holds true for market research and analysis. Yet conventional methods, such as the Repeated Measures Analysis of Variance (Rm ANOVA), do not always yield exact solutions, obliging practitioners to settle for asymptotic results and approximate solutions. Generalized inference in Multivariate Analysis of Variance (MANOVA), mixed models, and growth curves offer exact methods of data analysis under milder conditions without deviating from the conventional philosophy of statistical inference. Generalized Inference in Repeated Measures is a concise, self-contained guide to the use of these innovative solutions, presenting them as extensions of–rather than alternatives to–classical methods of statistical evaluation. Requiring minimal prior knowledge of statistical concepts in the evaluation of linear models, the book provides exact parametric methods for each application considered, with solutions presented in terms of generalized p-values. Coverage includes: New concepts in statistical inference, with special focus on generalized p-values and generalized confidence intervals One-way and two-way ANOVA, in cases of equal and unequal variances Basic and higher-way mixed models, including testing and estimation of fixed effects and variance components Multivariate populations, including basic inference, comparison, and analysis of variance Basic, widely used repeated measures models including crossover designs and growth curves With a comprehensive set of formulas, illustrative examples, and exercises in each chapter, Generalized Inference in Repeated Measures is ideal as both a comprehensive reference for research professionals and a text for students.
Book Synopsis Generalizability Theory by : Robert L. Brennan
Download or read book Generalizability Theory written by Robert L. Brennan and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generalizability theory offers an extensive conceptual framework and a powerful set of statistical procedures for characterizing and quantifying the fallibility of measurements. Robert Brennan, the author, has written the most comprehensive and up-to-date treatment of generalizability theory. The book provides a synthesis of those parts of the statistical literature that are directly applicable to generalizability theory. The principal intended audience is measurement practitioners and graduate students in the behavioral and social sciences, although a few examples and references are provided from other fields. Readers will benefit from some familiarity with classical test theory and analysis of variance, but the treatment of most topics does not presume specific background.
Book Synopsis Applied Multivariate Analysis by : Neil H. Timm
Download or read book Applied Multivariate Analysis written by Neil H. Timm and published by Springer Science & Business Media. This book was released on 2007-06-21 with total page 709 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a broad overview of the basic theory and methods of applied multivariate analysis. The presentation integrates both theory and practice including both the analysis of formal linear multivariate models and exploratory data analysis techniques. Each chapter contains the development of basic theoretical results with numerous applications illustrated using examples from the social and behavioral sciences, and other disciplines. All examples are analyzed using SAS for Windows Version 8.0.
Book Synopsis Resident Research Associateships, Postdoctoral and Senior Research Awards by : National Research Council (U.S.).
Download or read book Resident Research Associateships, Postdoctoral and Senior Research Awards written by National Research Council (U.S.). and published by National Academies. This book was released on with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Linear Models written by Shayle R. Searle and published by John Wiley & Sons. This book was released on 1997-03-28 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 1971 classic on linear models is once again available--as a Wiley Classics Library Edition. It features material that can be understood by any statistician who understands matrix algebra and basic statistical methods.
Book Synopsis Design and Analysis of Experiments by : Douglas C. Montgomery
Download or read book Design and Analysis of Experiments written by Douglas C. Montgomery and published by John Wiley & Sons. This book was released on 2008-07-28 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: This bestselling professional reference has helped over 100,000 engineers and scientists with the success of their experiments. The new edition includes more software examples taken from the three most dominant programs in the field: Minitab, JMP, and SAS. Additional material has also been added in several chapters, including new developments in robust design and factorial designs. New examples and exercises are also presented to illustrate the use of designed experiments in service and transactional organizations. Engineers will be able to apply this information to improve the quality and efficiency of working systems.
Book Synopsis Design and Analysis of Experiments by : Angela Dean
Download or read book Design and Analysis of Experiments written by Angela Dean and published by Springer. This book was released on 2017-04-05 with total page 852 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a step-by-step guide to the experimental planning process and the ensuing analysis of normally distributed data, emphasizing the practical considerations governing the design of an experiment. Data sets are taken from real experiments and sample SAS programs are included with each chapter. Experimental design is an essential part of investigation and discovery in science; this book will serve as a modern and comprehensive reference to the subject.
Book Synopsis Biometry for Forestry and Environmental Data by : Lauri Mehtatalo
Download or read book Biometry for Forestry and Environmental Data written by Lauri Mehtatalo and published by CRC Press. This book was released on 2020-05-27 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biometry for Forestry and Environmental Data with Examples in R focuses on statistical methods that are widely applicable in forestry and environmental sciences, but it also includes material that is of wider interest. Features: · Describes the theory and applications of selected statistical methods and illustrates their use and basic concepts through examples with forestry and environmental data in R. · Rigorous but easily accessible presentation of the linear, nonlinear, generalized linear and multivariate models, and their mixed-effects counterparts. Chapters on tree size, tree taper, measurement errors, and forest experiments are also included. · Necessary statistical theory about random variables, estimation and prediction is included. The wide applicability of the linear prediction theory is emphasized. · The hands-on examples with implementations using R make it easier for non-statisticians to understand the concepts and apply the methods with their own data. Lot of additional material is available at www.biombook.org. The book is aimed at students and researchers in forestry and environmental studies, but it will also be of interest to statisticians and researchers in other fields as well.
Book Synopsis SAS for Mixed Models by : Walter W. Stroup
Download or read book SAS for Mixed Models written by Walter W. Stroup and published by SAS Institute. This book was released on 2018-12-12 with total page 823 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover the power of mixed models with SAS. Mixed models—now the mainstream vehicle for analyzing most research data—are part of the core curriculum in most master’s degree programs in statistics and data science. In a single volume, this book updates both SAS® for Linear Models, Fourth Edition, and SAS® for Mixed Models, Second Edition, covering the latest capabilities for a variety of applications featuring the SAS GLIMMIX and MIXED procedures. Written for instructors of statistics, graduate students, scientists, statisticians in business or government, and other decision makers, SAS® for Mixed Models is the perfect entry for those with a background in two-way analysis of variance, regression, and intermediate-level use of SAS. This book expands coverage of mixed models for non-normal data and mixed-model-based precision and power analysis, including the following topics: Random-effect-only and random-coefficients models Multilevel, split-plot, multilocation, and repeated measures models Hierarchical models with nested random effects Analysis of covariance models Generalized linear mixed models This book is part of the SAS Press program.