Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Computation Of Special Functions
Download Computation Of Special Functions full books in PDF, epub, and Kindle. Read online Computation Of Special Functions ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Computation of Special Functions by : Shanjie Zhang
Download or read book Computation of Special Functions written by Shanjie Zhang and published by Wiley-Interscience. This book was released on 1996-07-26 with total page 752 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computation of Special Functions is a valuable book/software package containing more than 100 original computer programs for the computation of most special functions currently in use. These include many functions commonly omitted from available software packages, such as the Bessel and modified Bessel functions, the Mathieu and modified Mathieu functions, parabolic cylinder functions, and various prolate and oblate spheroidal wave functions. Also, unlike most software packages, this book/disk set gives readers the latitude to modify programs according to the special demands of the sophisticated problems they are working on. The authors provide detailed descriptions of the program's algorithms as well as specific information about each program's internal structure.
Book Synopsis Formulas and Theorems for the Special Functions of Mathematical Physics by : Wilhelm Magnus
Download or read book Formulas and Theorems for the Special Functions of Mathematical Physics written by Wilhelm Magnus and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a new and enlarged English edition of the book which, under the title "Formeln und Satze fur die Speziellen Funktionen der mathe matischen Physik" appeared in German in 1946. Much of the material (part of it unpublished) did not appear in the earlier editions. We hope that these additions will be useful and yet not too numerous for the purpose of locating .with ease any particular result. Compared to the first two (German) editions a change has taken place as far as the list of references is concerned. They are generally restricted to books and monographs and accomodated at the end of each individual chapter. Occasional references to papers follow those results to which they apply. The authors felt a certain justification for this change. At the time of the appearance of the previous edition nearly twenty years ago much of the material was scattered over a number of single contributions. Since then most of it has been included in books and monographs with quite exhaustive bibliographies. For information about numerical tables the reader is referred to "Mathematics of Computation", a periodical publis hed by the American Mathematical Society; "Handbook of Mathe matical Functions" with formulas, graphs and mathematical tables National Bureau of Standards Applied Mathematics Series, 55, 1964, 1046 pp., Government Printing Office, Washington, D.C., and FLETCHER, MILLER, ROSENHEAD, Index of Mathematical Tables, Addison-Wesley, Reading, Mass.) .. There is a list of symbols and abbreviations at the end of the book.
Book Synopsis Special Functions in Physics with MATLAB by : Wolfgang Schweizer
Download or read book Special Functions in Physics with MATLAB written by Wolfgang Schweizer and published by Springer Nature. This book was released on 2021-03-25 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook focuses on special functions in physics in the real and complex domain. It covers more than 170 different functions with additional numerical hints for efficient computation, which are useful to anyone who needs to program with other programming languages as well. The book comes with MATLAB-based programs for each of these functions and a detailed html-based documentation. Some of the explained functions are: Gamma and Beta functions; Legendre functions, which are linked to quantum mechanics and electrodynamics; Bessel functions; hypergeometric functions, which play an important role in mathematical physics; orthogonal polynomials, which are largely used in computational physics; and Riemann zeta functions, which play an important role, e.g., in quantum chaos or string theory. The book’s primary audience are scientists, professionals working in research areas of industries, and advanced students in physics, applied mathematics, and engineering.
Book Synopsis Riemann-Hilbert Problems, Their Numerical Solution, and the Computation of Nonlinear Special Functions by : Thomas Trogdon
Download or read book Riemann-Hilbert Problems, Their Numerical Solution, and the Computation of Nonlinear Special Functions written by Thomas Trogdon and published by SIAM. This book was released on 2015-12-22 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Riemann?Hilbert problems are fundamental objects of study within complex analysis. Many problems in differential equations and integrable systems, probability and random matrix theory, and asymptotic analysis can be solved by reformulation as a Riemann?Hilbert problem.This book, the most comprehensive one to date on the applied and computational theory of Riemann?Hilbert problems, includes an introduction to computational complex analysis, an introduction to the applied theory of Riemann?Hilbert problems from an analytical and numerical perspective, and a discussion of applications to integrable systems, differential equations, and special function theory. It also includes six fundamental examples and five more sophisticated examples of the analytical and numerical Riemann?Hilbert method, each of mathematical or physical significance or both.?
Book Synopsis Orthogonal Polynomials and Special Functions by : Francisco Marcellàn
Download or read book Orthogonal Polynomials and Special Functions written by Francisco Marcellàn and published by Springer Science & Business Media. This book was released on 2006-06-19 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Special functions and orthogonal polynomials in particular have been around for centuries. Can you imagine mathematics without trigonometric functions, the exponential function or polynomials? In the twentieth century the emphasis was on special functions satisfying linear differential equations, but this has now been extended to difference equations, partial differential equations and non-linear differential equations. The present set of lecture notes containes seven chapters about the current state of orthogonal polynomials and special functions and gives a view on open problems and future directions. The topics are: computational methods and software for quadrature and approximation, equilibrium problems in logarithmic potential theory, discrete orthogonal polynomials and convergence of Krylov subspace methods in numerical linear algebra, orthogonal rational functions and matrix orthogonal rational functions, orthogonal polynomials in several variables (Jack polynomials) and separation of variables, a classification of finite families of orthogonal polynomials in Askey’s scheme using Leonard pairs, and non-linear special functions associated with the Painlevé equations.
Book Synopsis Numerical Methods for Special Functions by : Amparo Gil
Download or read book Numerical Methods for Special Functions written by Amparo Gil and published by SIAM. This book was released on 2007-01-01 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Special functions arise in many problems of pure and applied mathematics, mathematical statistics, physics, and engineering. This book provides an up-to-date overview of numerical methods for computing special functions and discusses when to use these methods depending on the function and the range of parameters. Not only are standard and simple parameter domains considered, but methods valid for large and complex parameters are described as well. The first part of the book (basic methods) covers convergent and divergent series, Chebyshev expansions, numerical quadrature, and recurrence relations. Its focus is on the computation of special functions; however, it is suitable for general numerical courses. Pseudoalgorithms are given to help students write their own algorithms. In addition to these basic tools, the authors discuss other useful and efficient methods, such as methods for computing zeros of special functions, uniform asymptotic expansions, Padé approximations, and sequence transformations. The book also provides specific algorithms for computing several special functions (like Airy functions and parabolic cylinder functions, among others).
Book Synopsis The Mathematical-Function Computation Handbook by : Nelson H.F. Beebe
Download or read book The Mathematical-Function Computation Handbook written by Nelson H.F. Beebe and published by Springer. This book was released on 2017-08-20 with total page 1145 pages. Available in PDF, EPUB and Kindle. Book excerpt: This highly comprehensive handbook provides a substantial advance in the computation of elementary and special functions of mathematics, extending the function coverage of major programming languages well beyond their international standards, including full support for decimal floating-point arithmetic. Written with clarity and focusing on the C language, the work pays extensive attention to little-understood aspects of floating-point and integer arithmetic, and to software portability, as well as to important historical architectures. It extends support to a future 256-bit, floating-point format offering 70 decimal digits of precision. Select Topics and Features: references an exceptionally useful, author-maintained MathCW website, containing source code for the book’s software, compiled libraries for numerous systems, pre-built C compilers, and other related materials; offers a unique approach to covering mathematical-function computation using decimal arithmetic; provides extremely versatile appendices for interfaces to numerous other languages: Ada, C#, C++, Fortran, Java, and Pascal; presupposes only basic familiarity with computer programming in a common language, as well as early level algebra; supplies a library that readily adapts for existing scripting languages, with minimal effort; supports both binary and decimal arithmetic, in up to 10 different floating-point formats; covers a significant portion (with highly accurate implementations) of the U.S National Institute of Standards and Technology’s 10-year project to codify mathematical functions. This highly practical text/reference is an invaluable tool for advanced undergraduates, recording many lessons of the intermingled history of computer hardw are and software, numerical algorithms, and mathematics. In addition, professional numerical analysts and others will find the handbook of real interest and utility because it builds on research by the mathematical software community over the last four decades.
Book Synopsis Handbook of Continued Fractions for Special Functions by : Annie A.M. Cuyt
Download or read book Handbook of Continued Fractions for Special Functions written by Annie A.M. Cuyt and published by Springer Science & Business Media. This book was released on 2008-04-12 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: Special functions are pervasive in all fields of science and industry. The most well-known application areas are in physics, engineering, chemistry, computer science and statistics. Because of their importance, several books and websites (see for instance http: functions.wolfram.com) and a large collection of papers have been devoted to these functions. Of the standard work on the subject, the Handbook of mathematical functions with formulas, graphs and mathematical tables edited by Milton Abramowitz and Irene Stegun, the American National Institute of Standards claims to have sold over 700 000 copies! But so far no project has been devoted to the systematic study of continued fraction representations for these functions. This handbook is the result of such an endeavour. We emphasise that only 10% of the continued fractions contained in this book, can also be found in the Abramowitz and Stegun project or at the Wolfram website!
Book Synopsis Special Functions by : George E. Andrews
Download or read book Special Functions written by George E. Andrews and published by Cambridge University Press. This book was released on 1999 with total page 684 pages. Available in PDF, EPUB and Kindle. Book excerpt: An overview of special functions, focusing on the hypergeometric functions and the associated hypergeometric series.
Book Synopsis Handbook of Mathematical Functions by : Milton Abramowitz
Download or read book Handbook of Mathematical Functions written by Milton Abramowitz and published by Courier Corporation. This book was released on 1965-01-01 with total page 1068 pages. Available in PDF, EPUB and Kindle. Book excerpt: An extensive summary of mathematical functions that occur in physical and engineering problems
Book Synopsis Special Functions and Analysis of Differential Equations by : Praveen Agarwal
Download or read book Special Functions and Analysis of Differential Equations written by Praveen Agarwal and published by CRC Press. This book was released on 2020-09-08 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential Equations are very important tools in Mathematical Analysis. They are widely found in mathematics itself and in its applications to statistics, computing, electrical circuit analysis, dynamical systems, economics, biology, and so on. Recently there has been an increasing interest in and widely-extended use of differential equations and systems of fractional order (that is, of arbitrary order) as better models of phenomena in various physics, engineering, automatization, biology and biomedicine, chemistry, earth science, economics, nature, and so on. Now, new unified presentation and extensive development of special functions associated with fractional calculus are necessary tools, being related to the theory of differentiation and integration of arbitrary order (i.e., fractional calculus) and to the fractional order (or multi-order) differential and integral equations. This book provides learners with the opportunity to develop an understanding of advancements of special functions and the skills needed to apply advanced mathematical techniques to solve complex differential equations and Partial Differential Equations (PDEs). Subject matters should be strongly related to special functions involving mathematical analysis and its numerous applications. The main objective of this book is to highlight the importance of fundamental results and techniques of the theory of complex analysis for differential equations and PDEs and emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Specific topics include but are not limited to Partial differential equations Least squares on first-order system Sequence and series in functional analysis Special functions related to fractional (non-integer) order control systems and equations Various special functions related to generalized fractional calculus Operational method in fractional calculus Functional analysis and operator theory Mathematical physics Applications of numerical analysis and applied mathematics Computational mathematics Mathematical modeling This book provides the recent developments in special functions and differential equations and publishes high-quality, peer-reviewed book chapters in the area of nonlinear analysis, ordinary differential equations, partial differential equations, and related applications.
Book Synopsis Functions of Matrices by : Nicholas J. Higham
Download or read book Functions of Matrices written by Nicholas J. Higham and published by SIAM. This book was released on 2008-01-01 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thorough and elegant treatment of the theory of matrix functions and numerical methods for computing them, including an overview of applications, new and unpublished research results, and improved algorithms. Key features include a detailed treatment of the matrix sign function and matrix roots; a development of the theory of conditioning and properties of the Fre;chet derivative; Schur decomposition; block Parlett recurrence; a thorough analysis of the accuracy, stability, and computational cost of numerical methods; general results on convergence and stability of matrix iterations; and a chapter devoted to the f(A)b problem. Ideal for advanced courses and for self-study, its broad content, references and appendix also make this book a convenient general reference. Contains an extensive collection of problems with solutions and MATLAB implementations of key algorithms.
Book Synopsis NIST Handbook of Mathematical Functions Hardback and CD-ROM by : Frank W. J. Olver
Download or read book NIST Handbook of Mathematical Functions Hardback and CD-ROM written by Frank W. J. Olver and published by Cambridge University Press. This book was released on 2010-05-17 with total page 968 pages. Available in PDF, EPUB and Kindle. Book excerpt: The new standard reference on mathematical functions, replacing the classic but outdated handbook from Abramowitz and Stegun. Includes PDF version.
Book Synopsis Mathematics and Computation by : Avi Wigderson
Download or read book Mathematics and Computation written by Avi Wigderson and published by Princeton University Press. This book was released on 2019-10-29 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography
Download or read book Advanced R written by Hadley Wickham and published by CRC Press. This book was released on 2015-09-15 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Essential Reference for Intermediate and Advanced R Programmers Advanced R presents useful tools and techniques for attacking many types of R programming problems, helping you avoid mistakes and dead ends. With more than ten years of experience programming in R, the author illustrates the elegance, beauty, and flexibility at the heart of R. The book develops the necessary skills to produce quality code that can be used in a variety of circumstances. You will learn: The fundamentals of R, including standard data types and functions Functional programming as a useful framework for solving wide classes of problems The positives and negatives of metaprogramming How to write fast, memory-efficient code This book not only helps current R users become R programmers but also shows existing programmers what’s special about R. Intermediate R programmers can dive deeper into R and learn new strategies for solving diverse problems while programmers from other languages can learn the details of R and understand why R works the way it does.
Book Synopsis Symbolic Integration I by : Manuel Bronstein
Download or read book Symbolic Integration I written by Manuel Bronstein and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: This first volume in the series "Algorithms and Computation in Mathematics", is destined to become the standard reference work in the field. Manuel Bronstein is the number-one expert on this topic and his book is the first to treat the subject both comprehensively and in sufficient detail - incorporating new results along the way. The book addresses mathematicians and computer scientists interested in symbolic computation, developers and programmers of computer algebra systems as well as users of symbolic integration methods. Many algorithms are given in pseudocode ready for immediate implementation, making the book equally suitable as a textbook for lecture courses on symbolic integration.
Download or read book The H-Function written by A.M. Mathai and published by Springer Science & Business Media. This book was released on 2009-10-10 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: TheH-function or popularly known in the literature as Fox’sH-function has recently found applications in a large variety of problems connected with reaction, diffusion, reaction–diffusion, engineering and communication, fractional differ- tial and integral equations, many areas of theoretical physics, statistical distribution theory, etc. One of the standard books and most cited book on the topic is the 1978 book of Mathai and Saxena. Since then, the subject has grown a lot, mainly in the elds of applications. Due to popular demand, the authors were requested to - grade and bring out a revised edition of the 1978 book. It was decided to bring out a new book, mostly dealing with recent applications in statistical distributions, pa- way models, nonextensive statistical mechanics, astrophysics problems, fractional calculus, etc. and to make use of the expertise of Hans J. Haubold in astrophysics area also. It was decided to con ne the discussion toH-function of one scalar variable only. Matrix variable cases and many variable cases are not discussed in detail, but an insight into these areas is given. When going from one variable to many variables, there is nothing called a unique bivariate or multivariate analogue of a givenfunction. Whatever be the criteria used, there may be manydifferentfunctions quali ed to be bivariate or multivariate analogues of a given univariate function. Some of the bivariate and multivariateH-functions, currently in the literature, are also questioned by many authors.