Complexes of Differential Operators

Download Complexes of Differential Operators PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401103275
Total Pages : 407 pages
Book Rating : 4.4/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Complexes of Differential Operators by : Nikolai Tarkhanov

Download or read book Complexes of Differential Operators written by Nikolai Tarkhanov and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a systematic account of the facts concerning complexes of differential operators on differentiable manifolds. The central place is occupied by the study of general complexes of differential operators between sections of vector bundles. Although the global situation often contains nothing new as compared with the local one (that is, complexes of partial differential operators on an open subset of ]Rn), the invariant language allows one to simplify the notation and to distinguish better the algebraic nature of some questions. In the last 2 decades within the general theory of complexes of differential operators, the following directions were delineated: 1) the formal theory; 2) the existence theory; 3) the problem of global solvability; 4) overdetermined boundary problems; 5) the generalized Lefschetz theory of fixed points, and 6) the qualitative theory of solutions of overdetermined systems. All of these problems are reflected in this book to some degree. It is superfluous to say that different directions sometimes whimsically intersect. Considerable attention is given to connections and parallels with the theory of functions of several complex variables. One of the reproaches avowed beforehand by the author consists of the shortage of examples. The framework of the book has not permitted their number to be increased significantly. Certain parts of the book consist of results obtained by the author in 1977-1986. They have been presented in seminars in Krasnoyarsk, Moscow, Ekaterinburg, and N ovosi birsk.

Differential Analysis on Complex Manifolds

Download Differential Analysis on Complex Manifolds PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387738916
Total Pages : 315 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Differential Analysis on Complex Manifolds by : Raymond O. Wells

Download or read book Differential Analysis on Complex Manifolds written by Raymond O. Wells and published by Springer Science & Business Media. This book was released on 2007-10-31 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: A brand new appendix by Oscar Garcia-Prada graces this third edition of a classic work. In developing the tools necessary for the study of complex manifolds, this comprehensive, well-organized treatment presents in its opening chapters a detailed survey of recent progress in four areas: geometry (manifolds with vector bundles), algebraic topology, differential geometry, and partial differential equations. Wells’s superb analysis also gives details of the Hodge-Riemann bilinear relations on Kahler manifolds, Griffiths's period mapping, quadratic transformations, and Kodaira's vanishing and embedding theorems. Oscar Garcia-Prada’s appendix gives an overview of the developments in the field during the decades since the book appeared.

Complex Analysis

Download Complex Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3034600097
Total Pages : 353 pages
Book Rating : 4.0/5 (346 download)

DOWNLOAD NOW!


Book Synopsis Complex Analysis by : Peter Ebenfelt

Download or read book Complex Analysis written by Peter Ebenfelt and published by Springer Science & Business Media. This book was released on 2011-01-30 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the proceedings of a conference on Several Complex Variables, PDE’s, Geometry, and their interactions held in 2008 at the University of Fribourg, Switzerland, in honor of Linda Rothschild.

Complex Analysis

Download Complex Analysis PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540393668
Total Pages : 435 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Complex Analysis by : J. Eells

Download or read book Complex Analysis written by J. Eells and published by Springer. This book was released on 2006-11-15 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Compatible Spatial Discretizations

Download Compatible Spatial Discretizations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387380345
Total Pages : 247 pages
Book Rating : 4.3/5 (873 download)

DOWNLOAD NOW!


Book Synopsis Compatible Spatial Discretizations by : Douglas N. Arnold

Download or read book Compatible Spatial Discretizations written by Douglas N. Arnold and published by Springer Science & Business Media. This book was released on 2007-01-26 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: The IMA Hot Topics workshop on compatible spatialdiscretizations was held in 2004. This volume contains original contributions based on the material presented there. A unique feature is the inclusion of work that is representative of the recent developments in compatible discretizations across a wide spectrum of disciplines in computational science. Abstracts and presentation slides from the workshop can be accessed on the internet.

Differential Analysis on Complex Manifolds

Download Differential Analysis on Complex Manifolds PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 147573946X
Total Pages : 269 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Differential Analysis on Complex Manifolds by : R. O. Wells

Download or read book Differential Analysis on Complex Manifolds written by R. O. Wells and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: In developing the tools necessary for the study of complex manifolds, this comprehensive, well-organized treatment presents in its opening chapters a detailed survey of recent progress in four areas: geometry (manifolds with vector bundles), algebraic topology, differential geometry, and partial differential equations. Subsequent chapters then develop such topics as Hermitian exterior algebra and the Hodge *-operator, harmonic theory on compact manifolds, differential operators on a Kahler manifold, the Hodge decomposition theorem on compact Kahler manifolds, the Hodge-Riemann bilinear relations on Kahler manifolds, Griffiths's period mapping, quadratic transformations, and Kodaira's vanishing and embedding theorems. The third edition of this standard reference contains a new appendix by Oscar Garcia-Prada which gives an overview of certain developments in the field during the decades since the book first appeared. From reviews of the 2nd Edition: "..the new edition of Professor Wells' book is timely and welcome...an excellent introduction for any mathematician who suspects that complex manifold techniques may be relevant to his work." - Nigel Hitchin, Bulletin of the London Mathematical Society "Its purpose is to present the basics of analysis and geometry on compact complex manifolds, and is already one of the standard sources for this material." - Daniel M. Burns, Jr., Mathematical Reviews

Multidimensional Complex Analysis and Partial Differential Equations

Download Multidimensional Complex Analysis and Partial Differential Equations PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821805096
Total Pages : 290 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Multidimensional Complex Analysis and Partial Differential Equations by : Francois Treves

Download or read book Multidimensional Complex Analysis and Partial Differential Equations written by Francois Treves and published by American Mathematical Soc.. This book was released on 1997 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of papers by outstanding contributors in analysis, partial differential equations and several complex variables is dedicated to Professor Treves in honour of his 65th birthday. There are five excellent survey articles covering analytic singularities, holomorphically nondegenerate algebraic hypersurfaces, analyticity of CR mappings, removable singularities of vector fields and local solvability for systems of vector fields. The other papers are original research contributions on topics such as Klein-Gordon and Dirac equations, Toeplitz operators, elliptic structures, complexification of Lie groups, and pseudo-differential operators.

Partial Differential Equations in Several Complex Variables

Download Partial Differential Equations in Several Complex Variables PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821829615
Total Pages : 396 pages
Book Rating : 4.8/5 (296 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations in Several Complex Variables by : So-chin Chen

Download or read book Partial Differential Equations in Several Complex Variables written by So-chin Chen and published by American Mathematical Soc.. This book was released on 2001 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended as both an introductory text and a reference book for those interested in studying several complex variables in the context of partial differential equations. In the last few decades, significant progress has been made in the study of Cauchy-Riemann and tangential Cauchy-Riemann operators; this progress greatly influenced the development of PDEs and several complex variables. After the background material in complex analysis is developed in Chapters 1 to 3, thenext three chapters are devoted to the solvability and regularity of the Cauchy-Riemann equations using Hilbert space techniques. The authors provide a systematic study of the Cauchy-Riemann equations and the \bar\partial-Neumann problem, including Hórmander's L2 existence progress on the globalregularity and irregularity of the \bar\partial-Neumann operators. The second part of the book gives a comprehensive study of the tangential Cauchy-Riemann equations, another important class of equations in several complex variables first studied by Lewy. An up-to-date account of the L2 theory for \bar\partial b operator is given. Explicit integral solution representations are constructed both on the Heisenberg groups and on strictly convex boundaries with estimates in Hölder and L2spaces. Embeddability of abstract CR structures is discussed in detail here for the first time.Titles in this series are co-published with International Press, Cambridge, MA.

Introduction to Pseudodifferential and Fourier Integral Operators

Download Introduction to Pseudodifferential and Fourier Integral Operators PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1468487809
Total Pages : 335 pages
Book Rating : 4.4/5 (684 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Pseudodifferential and Fourier Integral Operators by : Jean-François Treves

Download or read book Introduction to Pseudodifferential and Fourier Integral Operators written by Jean-François Treves and published by Springer Science & Business Media. This book was released on 2013-12-11 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: I have tried in this book to describe those aspects of pseudodifferential and Fourier integral operator theory whose usefulness seems proven and which, from the viewpoint of organization and "presentability," appear to have stabilized. Since, in my opinion, the main justification for studying these operators is pragmatic, much attention has been paid to explaining their handling and to giving examples of their use. Thus the theoretical chapters usually begin with a section in which the construction of special solutions of linear partial differential equations is carried out, constructions from which the subsequent theory has emerged and which continue to motivate it: parametrices of elliptic equations in Chapter I (introducing pseudodifferen tial operators of type 1, 0, which here are called standard), of hypoelliptic equations in Chapter IV (devoted to pseudodifferential operators of type p, 8), fundamental solutions of strongly hyperbolic Cauchy problems in Chap ter VI (which introduces, from a "naive" standpoint, Fourier integral operators), and of certain nonhyperbolic forward Cauchy problems in Chapter X (Fourier integral operators with complex phase). Several chapters-II, III, IX, XI, and XII-are devoted entirely to applications. Chapter II provides all the facts about pseudodifferential operators needed in the proof of the Atiyah-Singer index theorem, then goes on to present part of the results of A. Calderon on uniqueness in the Cauchy problem, and ends with a new proof (due to J. J. Kohn) of the celebrated sum-of-squares theorem of L. Hormander, a proof that beautifully demon strates the advantages of using pseudodifferential operators.

Introduction to Pseudodifferential and Fourier Integral Operators Volume 2

Download Introduction to Pseudodifferential and Fourier Integral Operators Volume 2 PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780306404047
Total Pages : 382 pages
Book Rating : 4.4/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Pseudodifferential and Fourier Integral Operators Volume 2 by : François Trèves

Download or read book Introduction to Pseudodifferential and Fourier Integral Operators Volume 2 written by François Trèves and published by Springer Science & Business Media. This book was released on 1980 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Pseudo-differential Operators

Download Pseudo-differential Operators PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821871553
Total Pages : 432 pages
Book Rating : 4.8/5 (715 download)

DOWNLOAD NOW!


Book Synopsis Pseudo-differential Operators by : Luigi Rodino

Download or read book Pseudo-differential Operators written by Luigi Rodino and published by American Mathematical Soc.. This book was released on 2007-11-21 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is based on lectures given at the workshop on pseudo-differential operators held at the Fields Institute from December 11, 2006 to December 15, 2006. The two main themes of the workshop and hence this volume are partial differential equations and time-frequency analysis. The contents of this volume consist of five mini-courses for graduate students and post-docs, and fifteen papers on related topics. Of particular interest in this volume are the mathematical underpinnings, applications and ramifications of the relatively new Stockwell transform, which is a hybrid of the Gabor transform and the wavelet transform. The twenty papers in this volume reflect modern trends in the development of pseudo-differential operators.

Cohomological Theory of Dynamical Zeta Functions

Download Cohomological Theory of Dynamical Zeta Functions PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3034883404
Total Pages : 712 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Cohomological Theory of Dynamical Zeta Functions by : Andreas Juhl

Download or read book Cohomological Theory of Dynamical Zeta Functions written by Andreas Juhl and published by Birkhäuser. This book was released on 2012-12-06 with total page 712 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamical zeta functions are associated to dynamical systems with a countable set of periodic orbits. The dynamical zeta functions of the geodesic flow of lo cally symmetric spaces of rank one are known also as the generalized Selberg zeta functions. The present book is concerned with these zeta functions from a cohomological point of view. Originally, the Selberg zeta function appeared in the spectral theory of automorphic forms and were suggested by an analogy between Weil's explicit formula for the Riemann zeta function and Selberg's trace formula ([261]). The purpose of the cohomological theory is to understand the analytical properties of the zeta functions on the basis of suitable analogs of the Lefschetz fixed point formula in which periodic orbits of the geodesic flow take the place of fixed points. This approach is parallel to Weil's idea to analyze the zeta functions of pro jective algebraic varieties over finite fields on the basis of suitable versions of the Lefschetz fixed point formula. The Lefschetz formula formalism shows that the divisors of the rational Hassc-Wcil zeta functions are determined by the spectra of Frobenius operators on l-adic cohomology.

Symmetries and Overdetermined Systems of Partial Differential Equations

Download Symmetries and Overdetermined Systems of Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387738312
Total Pages : 565 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Symmetries and Overdetermined Systems of Partial Differential Equations by : Michael Eastwood

Download or read book Symmetries and Overdetermined Systems of Partial Differential Equations written by Michael Eastwood and published by Springer Science & Business Media. This book was released on 2009-04-23 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: This three-week summer program considered the symmetries preserving various natural geometric structures. There are two parts to the proceedings. The articles in the first part are expository but all contain significant new material. The articles in the second part are concerned with original research. All articles were thoroughly refereed and the range of interrelated work ensures that this will be an extremely useful collection.

Gröbner Bases in Symbolic Analysis

Download Gröbner Bases in Symbolic Analysis PDF Online Free

Author :
Publisher : Walter de Gruyter
ISBN 13 : 3110922754
Total Pages : 361 pages
Book Rating : 4.1/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Gröbner Bases in Symbolic Analysis by : Markus Rosenkranz

Download or read book Gröbner Bases in Symbolic Analysis written by Markus Rosenkranz and published by Walter de Gruyter. This book was released on 2011-12-22 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains survey articles and original research papers, presenting the state of the art on applying the symbolic approach of Gröbner bases and related methods to differential and difference equations. The contributions are based on talks delivered at the Special Semester on Gröbner Bases and Related Methods hosted by the Johann Radon Institute of Computational and Applied Mathematics, Linz, Austria, in May 2006.

Banach Space Complexes

Download Banach Space Complexes PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401103755
Total Pages : 218 pages
Book Rating : 4.4/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Banach Space Complexes by : C.-G. Ambrozie

Download or read book Banach Space Complexes written by C.-G. Ambrozie and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this work is to initiate a systematic study of those properties of Banach space complexes that are stable under certain perturbations. A Banach space complex is essentially an object of the form 1 op-l oP +1 ... --+ XP- --+ XP --+ XP --+ ... , where p runs a finite or infiniteinterval ofintegers, XP are Banach spaces, and oP : Xp ..... Xp+1 are continuous linear operators such that OPOp-1 = 0 for all indices p. In particular, every continuous linear operator S : X ..... Y, where X, Yare Banach spaces, may be regarded as a complex: O ..... X ~ Y ..... O. The already existing Fredholm theory for linear operators suggested the possibility to extend its concepts and methods to the study of Banach space complexes. The basic stability properties valid for (semi-) Fredholm operators have their counterparts in the more general context of Banach space complexes. We have in mind especially the stability of the index (i.e., the extended Euler characteristic) under small or compact perturbations, but other related stability results can also be successfully extended. Banach (or Hilbert) space complexes have penetrated the functional analysis from at least two apparently disjoint directions. A first direction is related to the multivariable spectral theory in the sense of J. L.

Analytic Partial Differential Equations

Download Analytic Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030940551
Total Pages : 1221 pages
Book Rating : 4.0/5 (39 download)

DOWNLOAD NOW!


Book Synopsis Analytic Partial Differential Equations by : François Treves

Download or read book Analytic Partial Differential Equations written by François Treves and published by Springer Nature. This book was released on 2022-04-26 with total page 1221 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a coherent, self-contained introduction to central topics of Analytic Partial Differential Equations in the natural geometric setting. The main themes are the analysis in phase-space of analytic PDEs and the Fourier–Bros–Iagolnitzer (FBI) transform of distributions and hyperfunctions, with application to existence and regularity questions. The book begins by establishing the fundamental properties of analytic partial differential equations, starting with the Cauchy–Kovalevskaya theorem, before presenting an integrated overview of the approach to hyperfunctions via analytic functionals, first in Euclidean space and, once the geometric background has been laid out, on analytic manifolds. Further topics include the proof of the Lojaciewicz inequality and the division of distributions by analytic functions, a detailed description of the Frobenius and Nagano foliations, and the Hamilton–Jacobi solutions of involutive systems of eikonal equations. The reader then enters the realm of microlocal analysis, through pseudodifferential calculus, introduced at a basic level, followed by Fourier integral operators, including those with complex phase-functions (à la Sjöstrand). This culminates in an in-depth discussion of the existence and regularity of (distribution or hyperfunction) solutions of analytic differential (and later, pseudodifferential) equations of principal type, exemplifying the usefulness of all the concepts and tools previously introduced. The final three chapters touch on the possible extension of the results to systems of over- (or under-) determined systems of these equations—a cornucopia of open problems. This book provides a unified presentation of a wealth of material that was previously restricted to research articles. In contrast to existing monographs, the approach of the book is analytic rather than algebraic, and tools such as sheaf cohomology, stratification theory of analytic varieties and symplectic geometry are used sparingly and introduced as required. The first half of the book is mainly pedagogical in intent, accessible to advanced graduate students and postdocs, while the second, more specialized part is intended as a reference for researchers.

Modern Methods in Complex Analysis (AM-137), Volume 137

Download Modern Methods in Complex Analysis (AM-137), Volume 137 PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 1400882575
Total Pages : 361 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Modern Methods in Complex Analysis (AM-137), Volume 137 by : Thomas Bloom

Download or read book Modern Methods in Complex Analysis (AM-137), Volume 137 written by Thomas Bloom and published by Princeton University Press. This book was released on 2016-03-02 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fifteen articles composing this volume focus on recent developments in complex analysis. Written by well-known researchers in complex analysis and related fields, they cover a wide spectrum of research using the methods of partial differential equations as well as differential and algebraic geometry. The topics include invariants of manifolds, the complex Neumann problem, complex dynamics, Ricci flows, the Abel-Radon transforms, the action of the Ricci curvature operator, locally symmetric manifolds, the maximum principle, very ampleness criterion, integrability of elliptic systems, and contact geometry. Among the contributions are survey articles, which are especially suitable for readers looking for a comprehensive, well-presented introduction to the most recent important developments in the field. The contributors are R. Bott, M. Christ, J. P. D'Angelo, P. Eyssidieux, C. Fefferman, J. E. Fornaess, H. Grauert, R. S. Hamilton, G. M. Henkin, N. Mok, A. M. Nadel, L. Nirenberg, N. Sibony, Y.-T. Siu, F. Treves, and S. M. Webster.