Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Complex Geometry Of Slant Submanifolds
Download Complex Geometry Of Slant Submanifolds full books in PDF, epub, and Kindle. Read online Complex Geometry Of Slant Submanifolds ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Complex Geometry of Slant Submanifolds by : Bang-Yen Chen
Download or read book Complex Geometry of Slant Submanifolds written by Bang-Yen Chen and published by Springer Nature. This book was released on 2022-05-11 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains an up-to-date survey and self-contained chapters on complex slant submanifolds and geometry, authored by internationally renowned researchers. The book discusses a wide range of topics, including slant surfaces, slant submersions, nearly Kaehler, locally conformal Kaehler, and quaternion Kaehler manifolds. It provides several classification results of minimal slant surfaces, quasi-minimal slant surfaces, slant surfaces with parallel mean curvature vector, pseudo-umbilical slant surfaces, and biharmonic and quasi biharmonic slant surfaces in Lorentzian complex space forms. Furthermore, this book includes new results on slant submanifolds of para-Hermitian manifolds. This book also includes recent results on slant lightlike submanifolds of indefinite Hermitian manifolds, which are of extensive use in general theory of relativity and potential applications in radiation and electromagnetic fields. Various open problems and conjectures on slant surfaces in complex space forms are also included in the book. It presents detailed information on the most recent advances in the area, making it valuable for scientists, educators and graduate students.
Book Synopsis Contact Geometry of Slant Submanifolds by : Bang-Yen Chen
Download or read book Contact Geometry of Slant Submanifolds written by Bang-Yen Chen and published by Springer Nature. This book was released on 2022-06-27 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains an up-to-date survey and self-contained chapters on contact slant submanifolds and geometry, authored by internationally renowned researchers. The notion of slant submanifolds was introduced by Prof. B.Y. Chen in 1990, and A. Lotta extended this notion in the framework of contact geometry in 1996. Numerous differential geometers have since obtained interesting results on contact slant submanifolds. The book gathers a wide range of topics such as warped product semi-slant submanifolds, slant submersions, semi-slant ξ┴ -, hemi-slant ξ┴ -Riemannian submersions, quasi hemi-slant submanifolds, slant submanifolds of metric f-manifolds, slant lightlike submanifolds, geometric inequalities for slant submanifolds, 3-slant submanifolds, and semi-slant submanifolds of almost paracontact manifolds. The book also includes interesting results on slant curves and magnetic curves, where the latter represents trajectories moving on a Riemannian manifold under the action of magnetic field. It presents detailed information on the most recent advances in the area, making it of much value to scientists, educators and graduate students.
Book Synopsis Geometry of Submanifolds and Applications by : Bang-Yen Chen
Download or read book Geometry of Submanifolds and Applications written by Bang-Yen Chen and published by Springer Nature. This book was released on with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Differential Geometry Of Warped Product Manifolds And Submanifolds by : Bang-yen Chen
Download or read book Differential Geometry Of Warped Product Manifolds And Submanifolds written by Bang-yen Chen and published by World Scientific. This book was released on 2017-05-29 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: A warped product manifold is a Riemannian or pseudo-Riemannian manifold whose metric tensor can be decomposed into a Cartesian product of the y geometry and the x geometry — except that the x-part is warped, that is, it is rescaled by a scalar function of the other coordinates y. The notion of warped product manifolds plays very important roles not only in geometry but also in mathematical physics, especially in general relativity. In fact, many basic solutions of the Einstein field equations, including the Schwarzschild solution and the Robertson-Walker models, are warped product manifolds.The first part of this volume provides a self-contained and accessible introduction to the important subject of pseudo-Riemannian manifolds and submanifolds. The second part presents a detailed and up-to-date account on important results of warped product manifolds, including several important spacetimes such as Robertson-Walker's and Schwarzschild's.The famous John Nash's embedding theorem published in 1956 implies that every warped product manifold can be realized as a warped product submanifold in a suitable Euclidean space. The study of warped product submanifolds in various important ambient spaces from an extrinsic point of view was initiated by the author around the beginning of this century.The last part of this volume contains an extensive and comprehensive survey of numerous important results on the geometry of warped product submanifolds done during this century by many geometers.
Book Synopsis Structures On Manifolds by : Masahiro Kon
Download or read book Structures On Manifolds written by Masahiro Kon and published by World Scientific. This book was released on 1985-02-01 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contents: Riemannian ManifoldsSubmanifolds of Riemannian ManifoldsComplex ManifoldsSubmanifolds of Kaehlerian ManifoldsContact ManifoldsSubmanifolds of Sasakian Manifoldsf-StructuresProduct ManifoldsSubmersions Readership: Mathematicians. Keywords:Riemannian Manifold;Submanifold;Complex Manifold;Contact Manifold;Kaehlerian Manifold;Sasakian Manifold;Anti-Invariant Submanifold;CR Submanifold;Contact CR Submanifold;Submersion
Book Synopsis Differential Geometry, Algebra, and Analysis by : Mohammad Hasan Shahid
Download or read book Differential Geometry, Algebra, and Analysis written by Mohammad Hasan Shahid and published by Springer Nature. This book was released on 2020-09-04 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of selected research papers, some of which were presented at the International Conference on Differential Geometry, Algebra and Analysis (ICDGAA 2016), held at the Department of Mathematics, Jamia Millia Islamia, New Delhi, from 15–17 November 2016. It covers a wide range of topics—geometry of submanifolds, geometry of statistical submanifolds, ring theory, module theory, optimization theory, and approximation theory—which exhibit new ideas and methodologies for current research in differential geometry, algebra and analysis. Providing new results with rigorous proofs, this book is, therefore, of much interest to readers who wish to learn new techniques in these areas of mathematics.
Book Synopsis Geometry of Submanifolds by : Bang-Yen Chen
Download or read book Geometry of Submanifolds written by Bang-Yen Chen and published by Courier Dover Publications. This book was released on 2019-06-12 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first two chapters of this frequently cited reference provide background material in Riemannian geometry and the theory of submanifolds. Subsequent chapters explore minimal submanifolds, submanifolds with parallel mean curvature vector, conformally flat manifolds, and umbilical manifolds. The final chapter discusses geometric inequalities of submanifolds, results in Morse theory and their applications, and total mean curvature of a submanifold. Suitable for graduate students and mathematicians in the area of classical and modern differential geometries, the treatment is largely self-contained. Problems sets conclude each chapter, and an extensive bibliography provides background for students wishing to conduct further research in this area. This new edition includes the author's corrections.
Book Synopsis Geometry And Topology Of Submanifolds Vii: Differential Geometry In Honour Of Prof Katsumi Nomizu by : Franki Dillen
Download or read book Geometry And Topology Of Submanifolds Vii: Differential Geometry In Honour Of Prof Katsumi Nomizu written by Franki Dillen and published by World Scientific. This book was released on 1995-05-09 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume on pure and applied differential geometry, includes topics on submanifold theory, affine differential geometry and applications of geometry in engineering sciences. The conference was dedicated to the 70th birthday of Prof Katsumi Nomizu. Papers on the scientific work and life of Katsumi Nomizu are also included.
Book Synopsis Handbook of Differential Geometry, Volume 1 by : F.J.E. Dillen
Download or read book Handbook of Differential Geometry, Volume 1 written by F.J.E. Dillen and published by Elsevier. This book was released on 1999-12-16 with total page 1067 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the series of volumes which together will constitute the Handbook of Differential Geometry a rather complete survey of the field of differential geometry is given. The different chapters will both deal with the basic material of differential geometry and with research results (old and recent). All chapters are written by experts in the area and contain a large bibliography.
Book Synopsis Inequalities in Geometry and Applications by : Gabriel-Eduard Vîlcu
Download or read book Inequalities in Geometry and Applications written by Gabriel-Eduard Vîlcu and published by MDPI. This book was released on 2021-03-09 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the recent developments in the field of geometric inequalities and their applications. The volume covers a vast range of topics, such as complex geometry, contact geometry, statistical manifolds, Riemannian submanifolds, optimization theory, topology of manifolds, log-concave functions, Obata differential equation, Chen invariants, Einstein spaces, warped products, solitons, isoperimetric problem, Erdös–Mordell inequality, Barrow’s inequality, Simpson inequality, Chen inequalities, and q-integral inequalities. By exposing new concepts, techniques and ideas, this book will certainly stimulate further research in the field.
Book Synopsis Handbook of Differential Geometry by : Franki J.E. Dillen
Download or read book Handbook of Differential Geometry written by Franki J.E. Dillen and published by Elsevier. This book was released on 2005-11-29 with total page 575 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the series of volumes which together will constitute the "Handbook of Differential Geometry" we try to give a rather complete survey of the field of differential geometry. The different chapters will both deal with the basic material of differential geometry and with research results (old and recent).All chapters are written by experts in the area and contain a large bibliography. In this second volume a wide range of areas in the very broad field of differential geometry is discussed, as there are Riemannian geometry, Lorentzian geometry, Finsler geometry, symplectic geometry, contact geometry, complex geometry, Lagrange geometry and the geometry of foliations. Although this does not cover the whole of differential geometry, the reader will be provided with an overview of some its most important areas.. Written by experts and covering recent research. Extensive bibliography. Dealing with a diverse range of areas. Starting from the basics
Book Synopsis Applicable Mathematics in the Golden Age by : J. C. Misra
Download or read book Applicable Mathematics in the Golden Age written by J. C. Misra and published by Alpha Science Int'l Ltd.. This book was released on 2003 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive volume introduces educational units dealing with the various emerging branches of Applicable Mathematics. It consists of chapters that deal with the major areas of pure mathematics and emphasises the cross-field application of the skills conveyed within.
Book Synopsis Topics in Modern Differential Geometry by : Stefan Haesen
Download or read book Topics in Modern Differential Geometry written by Stefan Haesen and published by Springer. This book was released on 2016-12-21 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: A variety of introductory articles is provided on a wide range of topics, including variational problems on curves and surfaces with anisotropic curvature. Experts in the fields of Riemannian, Lorentzian and contact geometry present state-of-the-art reviews of their topics. The contributions are written on a graduate level and contain extended bibliographies. The ten chapters are the result of various doctoral courses which were held in 2009 and 2010 at universities in Leuven, Serbia, Romania and Spain.
Book Synopsis Differential Geometry of Lightlike Submanifolds by : Krishan L. Duggal
Download or read book Differential Geometry of Lightlike Submanifolds written by Krishan L. Duggal and published by Springer Science & Business Media. This book was released on 2011-02-02 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents research on the latest developments in differential geometry of lightlike (degenerate) subspaces. The main focus is on hypersurfaces and a variety of submanifolds of indefinite Kählerian, Sasakian and quaternion Kähler manifolds.
Book Synopsis Geometry of Submanifolds and Homogeneous Spaces by : Andreas Arvanitoyeorgos
Download or read book Geometry of Submanifolds and Homogeneous Spaces written by Andreas Arvanitoyeorgos and published by MDPI. This book was released on 2020-01-03 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present Special Issue of Symmetry is devoted to two important areas of global Riemannian geometry, namely submanifold theory and the geometry of Lie groups and homogeneous spaces. Submanifold theory originated from the classical geometry of curves and surfaces. Homogeneous spaces are manifolds that admit a transitive Lie group action, historically related to F. Klein's Erlangen Program and S. Lie's idea to use continuous symmetries in studying differential equations. In this Special Issue, we provide a collection of papers that not only reflect some of the latest advancements in both areas, but also highlight relations between them and the use of common techniques. Applications to other areas of mathematics are also considered.
Book Synopsis Hermitian–Grassmannian Submanifolds by : Young Jin Suh
Download or read book Hermitian–Grassmannian Submanifolds written by Young Jin Suh and published by Springer. This book was released on 2017-09-14 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the proceedings of the 20th International Workshop on Hermitian Symmetric Spaces and Submanifolds, which was held at the Kyungpook National University from June 21 to 25, 2016. The Workshop was supported by the Research Institute of Real and Complex Manifolds (RIRCM) and the National Research Foundation of Korea (NRF). The Organizing Committee invited 30 active geometers of differential geometry and related fields from all around the globe to discuss new developments for research in the area. These proceedings provide a detailed overview of recent topics in the field of real and complex submanifolds.
Book Synopsis Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and their Applications by : Bayram Sahin
Download or read book Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and their Applications written by Bayram Sahin and published by Academic Press. This book was released on 2017-01-23 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and their Applications is a rich and self-contained exposition of recent developments in Riemannian submersions and maps relevant to complex geometry, focusing particularly on novel submersions, Hermitian manifolds, and K\{a}hlerian manifolds. Riemannian submersions have long been an effective tool to obtain new manifolds and compare certain manifolds within differential geometry. For complex cases, only holomorphic submersions function appropriately, as discussed at length in Falcitelli, Ianus and Pastore's classic 2004 book. In this new book, Bayram Sahin extends the scope of complex cases with wholly new submersion types, including Anti-invariant submersions, Semi-invariant submersions, slant submersions, and Pointwise slant submersions, also extending their use in Riemannian maps. The work obtains new properties of the domain and target manifolds and investigates the harmonicity and geodesicity conditions for such maps. It also relates these maps with discoveries in pseudo-harmonic maps. Results included in this volume should stimulate future research on Riemannian submersions and Riemannian maps. - Systematically reviews and references modern literature in Riemannian maps - Provides rigorous mathematical theory with applications - Presented in an accessible reading style with motivating examples that help the reader rapidly progress