Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Complex Algebraic Varieties
Download Complex Algebraic Varieties full books in PDF, epub, and Kindle. Read online Complex Algebraic Varieties ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Algebraic Geometry over the Complex Numbers by : Donu Arapura
Download or read book Algebraic Geometry over the Complex Numbers written by Donu Arapura and published by Springer Science & Business Media. This book was released on 2012-02-15 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a relatively fast paced graduate level introduction to complex algebraic geometry, from the basics to the frontier of the subject. It covers sheaf theory, cohomology, some Hodge theory, as well as some of the more algebraic aspects of algebraic geometry. The author frequently refers the reader if the treatment of a certain topic is readily available elsewhere but goes into considerable detail on topics for which his treatment puts a twist or a more transparent viewpoint. His cases of exploration and are chosen very carefully and deliberately. The textbook achieves its purpose of taking new students of complex algebraic geometry through this a deep yet broad introduction to a vast subject, eventually bringing them to the forefront of the topic via a non-intimidating style.
Book Synopsis Classification Theory of Algebraic Varieties and Compact Complex Spaces by : K. Ueno
Download or read book Classification Theory of Algebraic Varieties and Compact Complex Spaces written by K. Ueno and published by Springer. This book was released on 2006-11-15 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Principles of Algebraic Geometry by : Phillip Griffiths
Download or read book Principles of Algebraic Geometry written by Phillip Griffiths and published by John Wiley & Sons. This book was released on 2014-08-21 with total page 837 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive, self-contained treatment presenting general results of the theory. Establishes a geometric intuition and a working facility with specific geometric practices. Emphasizes applications through the study of interesting examples and the development of computational tools. Coverage ranges from analytic to geometric. Treats basic techniques and results of complex manifold theory, focusing on results applicable to projective varieties, and includes discussion of the theory of Riemann surfaces and algebraic curves, algebraic surfaces and the quadric line complex as well as special topics in complex manifolds.
Book Synopsis Algebraic Geometry I by : David Mumford
Download or read book Algebraic Geometry I written by David Mumford and published by Springer. This book was released on 1976 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "Although several textbooks on modern algebraic geometry have been published in the meantime, Mumford's "Volume I" is, together with its predecessor the red book of varieties and schemes, now as before one of the most excellent and profound primers of modern algebraic geometry. Both books are just true classics!" Zentralblatt
Book Synopsis Hodge Theory and Complex Algebraic Geometry I: by : Claire Voisin
Download or read book Hodge Theory and Complex Algebraic Geometry I: written by Claire Voisin and published by Cambridge University Press. This book was released on 2007-12-20 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a modern introduction to Kaehlerian geometry and Hodge structure. Coverage begins with variables, complex manifolds, holomorphic vector bundles, sheaves and cohomology theory (with the latter being treated in a more theoretical way than is usual in geometry). The book culminates with the Hodge decomposition theorem. In between, the author proves the Kaehler identities, which leads to the hard Lefschetz theorem and the Hodge index theorem. The second part of the book investigates the meaning of these results in several directions.
Author :Igor Rostislavovich Shafarevich Publisher :Springer Science & Business Media ISBN 13 :9783540575542 Total Pages :292 pages Book Rating :4.5/5 (755 download)
Book Synopsis Basic Algebraic Geometry 2 by : Igor Rostislavovich Shafarevich
Download or read book Basic Algebraic Geometry 2 written by Igor Rostislavovich Shafarevich and published by Springer Science & Business Media. This book was released on 1994 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second volume of Shafarevich's introductory book on algebraic geometry focuses on schemes, complex algebraic varieties and complex manifolds. As with Volume 1 the author has revised the text and added new material, e.g. a section on real algebraic curves. Although the material is more advanced than in Volume 1 the algebraic apparatus is kept to a minimum making the book accessible to non-specialists. It can be read independently of Volume 1 and is suitable for beginning graduate students in mathematics as well as in theoretical physics.
Book Synopsis Algebraic Curves and Riemann Surfaces by : Rick Miranda
Download or read book Algebraic Curves and Riemann Surfaces written by Rick Miranda and published by American Mathematical Soc.. This book was released on 1995 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking centre stage. But the main examples come fromprojective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Dualtiy Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves andcohomology are introduced as a unifying device in the later chapters, so that their utility and naturalness are immediately obvious. Requiring a background of one term of complex variable theory and a year of abstract algebra, this is an excellent graduate textbook for a second-term course in complex variables or a year-long course in algebraic geometry.
Book Synopsis A Concise Introduction to Algebraic Varieties by : Brian Osserman
Download or read book A Concise Introduction to Algebraic Varieties written by Brian Osserman and published by American Mathematical Society. This book was released on 2021-12-06 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Algebraic Varieties written by G. Kempf and published by Cambridge University Press. This book was released on 1993-09-09 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the theory of algebraic functions on varieties from a sheaf theoretic standpoint.
Book Synopsis Algebraic Geometry by : Robin Hartshorne
Download or read book Algebraic Geometry written by Robin Hartshorne and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.
Book Synopsis Geometry of Higher Dimensional Algebraic Varieties by : Thomas Peternell
Download or read book Geometry of Higher Dimensional Algebraic Varieties written by Thomas Peternell and published by Springer Science & Business Media. This book was released on 1997-03-20 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on lecture notes of a seminar of the Deutsche Mathematiker Vereinigung held by the authors at Oberwolfach from April 2 to 8, 1995. It gives an introduction to the classification theory and geometry of higher dimensional complex-algebraic varieties, focusing on the tremendeous developments of the sub ject in the last 20 years. The work is in two parts, with each one preceeded by an introduction describing its contents in detail. Here, it will suffice to simply ex plain how the subject matter has been divided. Cum grano salis one might say that Part 1 (Miyaoka) is more concerned with the algebraic methods and Part 2 (Peternell) with the more analytic aspects though they have unavoidable overlaps because there is no clearcut distinction between the two methods. Specifically, Part 1 treats the deformation theory, existence and geometry of rational curves via characteristic p, while Part 2 is principally concerned with vanishing theorems and their geometric applications. Part I Geometry of Rational Curves on Varieties Yoichi Miyaoka RIMS Kyoto University 606-01 Kyoto Japan Introduction: Why Rational Curves? This note is based on a series of lectures given at the Mathematisches Forschungsin stitut at Oberwolfach, Germany, as a part of the DMV seminar "Mori Theory". The construction of minimal models was discussed by T.
Book Synopsis Complex Geometry by : Daniel Huybrechts
Download or read book Complex Geometry written by Daniel Huybrechts and published by Springer Science & Business Media. This book was released on 2005 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Easily accessible Includes recent developments Assumes very little knowledge of differentiable manifolds and functional analysis Particular emphasis on topics related to mirror symmetry (SUSY, Kaehler-Einstein metrics, Tian-Todorov lemma)
Book Synopsis Real Algebraic Varieties by : Frédéric Mangolte
Download or read book Real Algebraic Varieties written by Frédéric Mangolte and published by Springer Nature. This book was released on 2020-09-21 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a systematic presentation of real algebraic varieties. Real algebraic varieties are ubiquitous.They are the first objects encountered when learning of coordinates, then equations, but the systematic study of these objects, however elementary they may be, is formidable. This book is intended for two kinds of audiences: it accompanies the reader, familiar with algebra and geometry at the masters level, in learning the basics of this rich theory, as much as it brings to the most advanced reader many fundamental results often missing from the available literature, the “folklore”. In particular, the introduction of topological methods of the theory to non-specialists is one of the original features of the book. The first three chapters introduce the basis and classical methods of real and complex algebraic geometry. The last three chapters each focus on one more specific aspect of real algebraic varieties. A panorama of classical knowledge is presented, as well as major developments of the last twenty years in the topology and geometry of varieties of dimension two and three, without forgetting curves, the central subject of Hilbert's famous sixteenth problem. Various levels of exercises are given, and the solutions of many of them are provided at the end of each chapter.
Book Synopsis Complex Abelian Varieties by : Herbert Lange
Download or read book Complex Abelian Varieties written by Herbert Lange and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abelian varieties are special examples of projective varieties. As such theycan be described by a set of homogeneous polynomial equations. The theory ofabelian varieties originated in the beginning of the ninetheenth centrury with the work of Abel and Jacobi. The subject of this book is the theory of abelian varieties over the field of complex numbers, and it covers the main results of the theory, both classic and recent, in modern language. It is intended to give a comprehensive introduction to the field, but also to serve as a reference. The focal topics are the projective embeddings of an abelian variety, their equations and geometric properties. Moreover several moduli spaces of abelian varieties with additional structure are constructed. Some special results onJacobians and Prym varieties allow applications to the theory of algebraic curves. The main tools for the proofs are the theta group of a line bundle, introduced by Mumford, and the characteristics, to be associated to any nondegenerate line bundle. They are a direct generalization of the classical notion of characteristics of theta functions.
Book Synopsis Arithmetic of Higher-Dimensional Algebraic Varieties by : Bjorn Poonen
Download or read book Arithmetic of Higher-Dimensional Algebraic Varieties written by Bjorn Poonen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text offers a collection of survey and research papers by leading specialists in the field documenting the current understanding of higher dimensional varieties. Recently, it has become clear that ideas from many branches of mathematics can be successfully employed in the study of rational and integral points. This book will be very valuable for researchers from these various fields who have an interest in arithmetic applications, specialists in arithmetic geometry itself, and graduate students wishing to pursue research in this area.
Book Synopsis Complex Analysis and Algebraic Geometry by : Kunihiko Kodaira
Download or read book Complex Analysis and Algebraic Geometry written by Kunihiko Kodaira and published by CUP Archive. This book was released on 1977 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: The articles in this volume cover some developments in complex analysis and algebraic geometry. The book is divided into three parts. Part I includes topics in the theory of algebraic surfaces and analytic surface. Part II covers topics in moduli and classification problems, as well as structure theory of certain complex manifolds. Part III is devoted to various topics in algebraic geometry analysis and arithmetic. A survey article by Ueno serves as an introduction to the general background of the subject matter of the volume. The volume was written for Kunihiko Kodaira on the occasion of his sixtieth birthday, by his friends and students. Professor Kodaira was one of the world's leading mathematicians in algebraic geometry and complex manifold theory: and the contributions reflect those concerns.
Book Synopsis Complex Algebraic Curves by : Frances Clare Kirwan
Download or read book Complex Algebraic Curves written by Frances Clare Kirwan and published by Cambridge University Press. This book was released on 1992-02-20 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: This development of the theory of complex algebraic curves was one of the peaks of nineteenth century mathematics. They have many fascinating properties and arise in various areas of mathematics, from number theory to theoretical physics, and are the subject of much research. By using only the basic techniques acquired in most undergraduate courses in mathematics, Dr. Kirwan introduces the theory, observes the algebraic and topological properties of complex algebraic curves, and shows how they are related to complex analysis.