Author : Jonathan Amezcua
Publisher : Springer
ISBN 13 : 3319737732
Total Pages : 78 pages
Book Rating : 4.3/5 (197 download)
Book Synopsis New Classification Method Based on Modular Neural Networks with the LVQ Algorithm and Type-2 Fuzzy Logic by : Jonathan Amezcua
Download or read book New Classification Method Based on Modular Neural Networks with the LVQ Algorithm and Type-2 Fuzzy Logic written by Jonathan Amezcua and published by Springer. This book was released on 2018-02-05 with total page 78 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book a new model for data classification was developed. This new model is based on the competitive neural network Learning Vector Quantization (LVQ) and type-2 fuzzy logic. This computational model consists of the hybridization of the aforementioned techniques, using a fuzzy logic system within the competitive layer of the LVQ network to determine the shortest distance between a centroid and an input vector. This new model is based on a modular LVQ architecture to further improve its performance on complex classification problems. It also implements a data-similarity process for preprocessing the datasets, in order to build dynamic architectures, having the classes with the highest degree of similarity in different modules. Some architectures were developed in order to work mainly with two datasets, an arrhythmia dataset (using ECG signals) for classifying 15 different types of arrhythmias, and a satellite images segments dataset used for classifying six different types of soil. Both datasets show interesting features that makes them interesting for testing new classification methods.