Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Cohomology Of The Bianchi Groups
Download Cohomology Of The Bianchi Groups full books in PDF, epub, and Kindle. Read online Cohomology Of The Bianchi Groups ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Cohomology of the Bianchi Groups by : Ethan Berkove
Download or read book Cohomology of the Bianchi Groups written by Ethan Berkove and published by . This book was released on 1996 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Cohomology of Arithmetic Groups by : James W. Cogdell
Download or read book Cohomology of Arithmetic Groups written by James W. Cogdell and published by Springer. This book was released on 2018-08-18 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the mathematical interests of Joachim Schwermer, who throughout his career has focused on the cohomology of arithmetic groups, automorphic forms and the geometry of arithmetic manifolds. To mark his 66th birthday, the editors brought together mathematical experts to offer an overview of the current state of research in these and related areas. The result is this book, with contributions ranging from topology to arithmetic. It probes the relation between cohomology of arithmetic groups and automorphic forms and their L-functions, and spans the range from classical Bianchi groups to the theory of Shimura varieties. It is a valuable reference for both experts in the fields and for graduate students and postdocs wanting to discover where the current frontiers lie.
Book Synopsis Algebraic Theory of the Bianchi Groups by : Fine
Download or read book Algebraic Theory of the Bianchi Groups written by Fine and published by CRC Press. This book was released on 1989-07-17 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Computations with Modular Forms by : Gebhard Böckle
Download or read book Computations with Modular Forms written by Gebhard Böckle and published by Springer Science & Business Media. This book was released on 2014-01-23 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains original research articles, survey articles and lecture notes related to the Computations with Modular Forms 2011 Summer School and Conference, held at the University of Heidelberg. A key theme of the Conference and Summer School was the interplay between theory, algorithms and experiment. The 14 papers offer readers both, instructional courses on the latest algorithms for computing modular and automorphic forms, as well as original research articles reporting on the latest developments in the field. The three Summer School lectures provide an introduction to modern algorithms together with some theoretical background for computations of and with modular forms, including computing cohomology of arithmetic groups, algebraic automorphic forms, and overconvergent modular symbols. The 11 Conference papers cover a wide range of themes related to computations with modular forms, including lattice methods for algebraic modular forms on classical groups, a generalization of the Maeda conjecture, an efficient algorithm for special values of p-adic Rankin triple product L-functions, arithmetic aspects and experimental data of Bianchi groups, a theoretical study of the real Jacobian of modular curves, results on computing weight one modular forms, and more.
Author :Gregori A. Margulis Publisher :Springer Science & Business Media ISBN 13 :9783540121794 Total Pages :408 pages Book Rating :4.1/5 (217 download)
Book Synopsis Discrete Subgroups of Semisimple Lie Groups by : Gregori A. Margulis
Download or read book Discrete Subgroups of Semisimple Lie Groups written by Gregori A. Margulis and published by Springer Science & Business Media. This book was released on 1991-02-15 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discrete subgroups have played a central role throughout the development of numerous mathematical disciplines. Discontinuous group actions and the study of fundamental regions are of utmost importance to modern geometry. Flows and dynamical systems on homogeneous spaces have found a wide range of applications, and of course number theory without discrete groups is unthinkable. This book, written by a master of the subject, is primarily devoted to discrete subgroups of finite covolume in semi-simple Lie groups. Since the notion of "Lie group" is sufficiently general, the author not only proves results in the classical geometry setting, but also obtains theorems of an algebraic nature, e.g. classification results on abstract homomorphisms of semi-simple algebraic groups over global fields. The treatise of course contains a presentation of the author's fundamental rigidity and arithmeticity theorems. The work in this monograph requires the language and basic results from fields such as algebraic groups, ergodic theory, the theory of unitary representatons, and the theory of amenable groups. The author develops the necessary material from these subjects; so that, while the book is of obvious importance for researchers working in related areas, it is essentially self-contained and therefore is also of great interest for advanced students.
Book Synopsis Automorphic Forms and $L$-functions I by : David Ginzburg
Download or read book Automorphic Forms and $L$-functions I written by David Ginzburg and published by American Mathematical Soc.. This book was released on 2009 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Includes articles that represent global aspects of automorphic forms. This book covers topics such as: the trace formula; functoriality; representations of reductive groups over local fields; the relative trace formula and periods of automorphic forms; Rankin - Selberg convolutions and L-functions; and, p-adic L-functions.
Book Synopsis Groups Acting on Hyperbolic Space by : Juergen Elstrodt
Download or read book Groups Acting on Hyperbolic Space written by Juergen Elstrodt and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is concerned with discontinuous groups of motions of the unique connected and simply connected Riemannian 3-manifold of constant curva ture -1, which is traditionally called hyperbolic 3-space. This space is the 3-dimensional instance of an analogous Riemannian manifold which exists uniquely in every dimension n :::: 2. The hyperbolic spaces appeared first in the work of Lobachevski in the first half of the 19th century. Very early in the last century the group of isometries of these spaces was studied by Steiner, when he looked at the group generated by the inversions in spheres. The ge ometries underlying the hyperbolic spaces were of fundamental importance since Lobachevski, Bolyai and Gauß had observed that they do not satisfy the axiom of parallels. Already in the classical works several concrete coordinate models of hy perbolic 3-space have appeared. They make explicit computations possible and also give identifications of the full group of motions or isometries with well-known matrix groups. One such model, due to H. Poincare, is the upper 3 half-space IH in JR . The group of isometries is then identified with an exten sion of index 2 of the group PSL(2,
Book Synopsis Elementary Theory of Groups and Group Rings, and Related Topics by : Paul Baginski
Download or read book Elementary Theory of Groups and Group Rings, and Related Topics written by Paul Baginski and published by Walter de Gruyter GmbH & Co KG. This book was released on 2020-02-10 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: This proceedings volume documents the contributions presented at the conference held at Fairfield University and at the Graduate Center, CUNY in 2018 celebrating the New York Group Theory Seminar, in memoriam Gilbert Baumslag, and to honor Benjamin Fine and Anthony Gaglione. It includes several expert contributions by leading figures in the group theory community and provides a valuable source of information on recent research developments.
Book Synopsis Arithmetic and Geometry by : Luis Dieulefait
Download or read book Arithmetic and Geometry written by Luis Dieulefait and published by Cambridge University Press. This book was released on 2015-10-08 with total page 539 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 'Arithmetic and Geometry' trimester, held at the Hausdorff Research Institute for Mathematics in Bonn, focussed on recent work on Serre's conjecture and on rational points on algebraic varieties. The resulting proceedings volume provides a modern overview of the subject for graduate students in arithmetic geometry and Diophantine geometry. It is also essential reading for any researcher wishing to keep abreast of the latest developments in the field. Highlights include Tim Browning's survey on applications of the circle method to rational points on algebraic varieties and Per Salberger's chapter on rational points on cubic hypersurfaces.
Book Synopsis Scissors Congruences, Group Homology and Characteristic Classes by : Johan L. Dupont
Download or read book Scissors Congruences, Group Homology and Characteristic Classes written by Johan L. Dupont and published by World Scientific. This book was released on 2001 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: These lecture notes are based on a series of lectures given at the Nankai Institute of Mathematics in the fall of 1998. They provide an overview of the work of the author and the late Chih-Han Sah on various aspects of Hilbert's Third Problem: Are two Euclidean polyhedra with the same volume ?scissors-congruent?, i.e. can they be subdivided into finitely many pairwise congruent pieces? The book starts from the classical solution of this problem by M Dehn. But generalization to higher dimensions and other geometries quickly leads to a great variety of mathematical topics, such as homology of groups, algebraic K-theory, characteristic classes for flat bundles, and invariants for hyperbolic manifolds. Some of the material, particularly in the chapters on projective configurations, is published here for the first time.
Book Synopsis Algorithmic Number Theory by : Guillaume Hanrot
Download or read book Algorithmic Number Theory written by Guillaume Hanrot and published by Springer. This book was released on 2010-07-08 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 9th International Algorithmic Number Theory Symposium, ANTS 2010, held in Nancy, France, in July 2010. The 25 revised full papers presented together with 5 invited papers were carefully reviewed and selected for inclusion in the book. The papers are devoted to algorithmic aspects of number theory, including elementary number theory, algebraic number theory, analytic number theory, geometry of numbers, algebraic geometry, finite fields, and cryptography.
Book Synopsis An Invitation to Computational Homotopy by : Graham Ellis
Download or read book An Invitation to Computational Homotopy written by Graham Ellis and published by Oxford University Press. This book was released on 2019-08-14 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Invitation to Computational Homotopy is an introduction to elementary algebraic topology for those with an interest in computers and computer programming. It expertly illustrates how the basics of the subject can be implemented on a computer through its focus on fully-worked examples designed to develop problem solving techniques. The transition from basic theory to practical computation raises a range of non-trivial algorithmic issues which will appeal to readers already familiar with basic theory and who are interested in developing computational aspects. The book covers a subset of standard introductory material on fundamental groups, covering spaces, homology, cohomology and classifying spaces as well as some less standard material on crossed modules. These topics are covered in a way that hints at potential applications of topology in areas of computer science and engineering outside the usual territory of pure mathematics, and also in a way that demonstrates how computers can be used to perform explicit calculations within the domain of pure algebraic topology itself. The initial chapters include in-depth examples from data mining, biology and digital image analysis, while the later chapters cover a range of computational examples on the cohomology of classifying spaces that are likely beyond the reach of a purely paper-and-pen approach to the subject. An Invitation to Computational Homotopy serves as a self-contained and informal introduction to these topics and their implementation in the sphere of computer science. Written in a dynamic and engaging style, it skilfully showcases a range of useful machine computations, and will serve as an invaluable aid to graduate students working with algebraic topology.
Book Synopsis Canadian Journal of Mathematics by :
Download or read book Canadian Journal of Mathematics written by and published by . This book was released on 1991-02 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Orbifolds and Stringy Topology by : Alejandro Adem
Download or read book Orbifolds and Stringy Topology written by Alejandro Adem and published by Cambridge University Press. This book was released on 2007-05-31 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the theory of orbifolds from a modern perspective, combining techniques from geometry, algebraic topology and algebraic geometry. One of the main motivations, and a major source of examples, is string theory, where orbifolds play an important role. The subject is first developed following the classical description analogous to manifold theory, after which the book branches out to include the useful description of orbifolds provided by groupoids, as well as many examples in the context of algebraic geometry. Classical invariants such as de Rham cohomology and bundle theory are developed, a careful study of orbifold morphisms is provided, and the topic of orbifold K-theory is covered. The heart of this book, however, is a detailed description of the Chen-Ruan cohomology, which introduces a product for orbifolds and has had significant impact. The final chapter includes explicit computations for a number of interesting examples.
Book Synopsis Algebraic Topology by : Allen Hatcher
Download or read book Algebraic Topology written by Allen Hatcher and published by Cambridge University Press. This book was released on 2002 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory textbook suitable for use in a course or for self-study, featuring broad coverage of the subject and a readable exposition, with many examples and exercises.
Book Synopsis Groups St Andrews 2013 by : C. M. Campbell
Download or read book Groups St Andrews 2013 written by C. M. Campbell and published by Cambridge University Press. This book was released on 2015-10-22 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leading researchers survey the latest developments in group theory and many related areas.
Book Synopsis Characteristic Classes by : John Willard Milnor
Download or read book Characteristic Classes written by John Willard Milnor and published by Princeton University Press. This book was released on 1974 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of characteristic classes provides a meeting ground for the various disciplines of differential topology, differential and algebraic geometry, cohomology, and fiber bundle theory. As such, it is a fundamental and an essential tool in the study of differentiable manifolds. In this volume, the authors provide a thorough introduction to characteristic classes, with detailed studies of Stiefel-Whitney classes, Chern classes, Pontrjagin classes, and the Euler class. Three appendices cover the basics of cohomology theory and the differential forms approach to characteristic classes, and provide an account of Bernoulli numbers. Based on lecture notes of John Milnor, which first appeared at Princeton University in 1957 and have been widely studied by graduate students of topology ever since, this published version has been completely revised and corrected.