Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Classification Pattern Recognition And Reduction Of Dimensionality
Download Classification Pattern Recognition And Reduction Of Dimensionality full books in PDF, epub, and Kindle. Read online Classification Pattern Recognition And Reduction Of Dimensionality ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Classification Pattern Recognition and Reduction of Dimensionality by : Paruchuri Rama Krishnaiah
Download or read book Classification Pattern Recognition and Reduction of Dimensionality written by Paruchuri Rama Krishnaiah and published by . This book was released on 2005 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Multi-Label Dimensionality Reduction by : Liang Sun
Download or read book Multi-Label Dimensionality Reduction written by Liang Sun and published by CRC Press. This book was released on 2016-04-19 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: Similar to other data mining and machine learning tasks, multi-label learning suffers from dimensionality. An effective way to mitigate this problem is through dimensionality reduction, which extracts a small number of features by removing irrelevant, redundant, and noisy information. The data mining and machine learning literature currently lacks
Book Synopsis Advances in Neural Networks - ISNN 2007 by : Derong Liu
Download or read book Advances in Neural Networks - ISNN 2007 written by Derong Liu and published by Springer. This book was released on 2007-07-14 with total page 1346 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is part of a three volume set that constitutes the refereed proceedings of the 4th International Symposium on Neural Networks, ISNN 2007, held in Nanjing, China in June 2007. Coverage includes neural networks for control applications, robotics, data mining and feature extraction, chaos and synchronization, support vector machines, fault diagnosis/detection, image/video processing, and applications of neural networks.
Book Synopsis Machine Learning Techniques for Multimedia by : Matthieu Cord
Download or read book Machine Learning Techniques for Multimedia written by Matthieu Cord and published by Springer Science & Business Media. This book was released on 2008-02-07 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: Processing multimedia content has emerged as a key area for the application of machine learning techniques, where the objectives are to provide insight into the domain from which the data is drawn, and to organize that data and improve the performance of the processes manipulating it. Arising from the EU MUSCLE network, this multidisciplinary book provides a comprehensive coverage of the most important machine learning techniques used and their application in this domain.
Book Synopsis Pattern Recognition by : Sergios Theodoridis
Download or read book Pattern Recognition written by Sergios Theodoridis and published by Elsevier. This book was released on 2003-05-15 with total page 705 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pattern recognition is a scientific discipline that is becoming increasingly important in the age of automation and information handling and retrieval. Patter Recognition, 2e covers the entire spectrum of pattern recognition applications, from image analysis to speech recognition and communications. This book presents cutting-edge material on neural networks, - a set of linked microprocessors that can form associations and uses pattern recognition to "learn" -and enhances student motivation by approaching pattern recognition from the designer's point of view. A direct result of more than 10 years of teaching experience, the text was developed by the authors through use in their own classrooms.*Approaches pattern recognition from the designer's point of view*New edition highlights latest developments in this growing field, including independent components and support vector machines, not available elsewhere*Supplemented by computer examples selected from applications of interest
Book Synopsis Knowledge-Based Intelligent Information and Engineering Systems by : Ignac Lovrek
Download or read book Knowledge-Based Intelligent Information and Engineering Systems written by Ignac Lovrek and published by Springer Science & Business Media. This book was released on 2008-08-18 with total page 1079 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation The three volume set LNAI 5177, LNAI 5178, and LNAI 5179, constitutes the refereed proceedings of the 12th International Conference on Knowledge-Based Intelligent Information and Engineering Systems, KES 2008, held in Zagreb, Croatia, in September 2008. The 316 revised papers presented were carefully reviewed and selected. The papers present a wealth of original research results from the field of intelligent information processing in the broadest sense; topics covered in the first volume are artificial neural networks and connectionists systems; fuzzy and neuro-fuzzy systems; evolutionary computation; machine learning and classical AI; agent systems; knowledge based and expert systems; intelligent vision and image processing; knowledge management, ontologies, and data mining; Web intelligence, text and multimedia mining and retrieval; and intelligent robotics and control.
Book Synopsis Multivariate Observations by : George A. F. Seber
Download or read book Multivariate Observations written by George A. F. Seber and published by John Wiley & Sons. This book was released on 2009-09-25 with total page 718 pages. Available in PDF, EPUB and Kindle. Book excerpt: WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "In recent years many monographs have been published on specialized aspects of multivariate data-analysis–on cluster analysis, multidimensional scaling, correspondence analysis, developments of discriminant analysis, graphical methods, classification, and so on. This book is an attempt to review these newer methods together with the classical theory. . . . This one merits two cheers." –J. C. Gower, Department of Statistics Rothamsted Experimental Station, Harpenden, U.K. Review in Biometrics, June 1987 Multivariate Observations is a comprehensive sourcebook that treats data-oriented techniques as well as classical methods. Emphasis is on principles rather than mathematical detail, and coverage ranges from the practical problems of graphically representing high-dimensional data to the theoretical problems relating to matrices of random variables. Each chapter serves as a self-contained survey of a specific topic. The book includes many numerical examples and over 1,100 references.
Book Synopsis Fundamentals of Pattern Recognition and Machine Learning by : Ulisses Braga-Neto
Download or read book Fundamentals of Pattern Recognition and Machine Learning written by Ulisses Braga-Neto and published by Springer Nature. This book was released on 2020-09-10 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Pattern Recognition and Machine Learning is designed for a one or two-semester introductory course in Pattern Recognition or Machine Learning at the graduate or advanced undergraduate level. The book combines theory and practice and is suitable to the classroom and self-study. It has grown out of lecture notes and assignments that the author has developed while teaching classes on this topic for the past 13 years at Texas A&M University. The book is intended to be concise but thorough. It does not attempt an encyclopedic approach, but covers in significant detail the tools commonly used in pattern recognition and machine learning, including classification, dimensionality reduction, regression, and clustering, as well as recent popular topics such as Gaussian process regression and convolutional neural networks. In addition, the selection of topics has a few features that are unique among comparable texts: it contains an extensive chapter on classifier error estimation, as well as sections on Bayesian classification, Bayesian error estimation, separate sampling, and rank-based classification. The book is mathematically rigorous and covers the classical theorems in the area. Nevertheless, an effort is made in the book to strike a balance between theory and practice. In particular, examples with datasets from applications in bioinformatics and materials informatics are used throughout to illustrate the theory. These datasets are available from the book website to be used in end-of-chapter coding assignments based on python and scikit-learn. All plots in the text were generated using python scripts, which are also available on the book website.
Book Synopsis Statistical Pattern Recognition by : Andrew R. Webb
Download or read book Statistical Pattern Recognition written by Andrew R. Webb and published by John Wiley & Sons. This book was released on 2003-07-25 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical pattern recognition is a very active area of study andresearch, which has seen many advances in recent years. New andemerging applications - such as data mining, web searching,multimedia data retrieval, face recognition, and cursivehandwriting recognition - require robust and efficient patternrecognition techniques. Statistical decision making and estimationare regarded as fundamental to the study of pattern recognition. Statistical Pattern Recognition, Second Edition has been fullyupdated with new methods, applications and references. It providesa comprehensive introduction to this vibrant area - with materialdrawn from engineering, statistics, computer science and the socialsciences - and covers many application areas, such as databasedesign, artificial neural networks, and decision supportsystems. * Provides a self-contained introduction to statistical patternrecognition. * Each technique described is illustrated by real examples. * Covers Bayesian methods, neural networks, support vectormachines, and unsupervised classification. * Each section concludes with a description of the applicationsthat have been addressed and with further developments of thetheory. * Includes background material on dissimilarity, parameterestimation, data, linear algebra and probability. * Features a variety of exercises, from 'open-book' questions tomore lengthy projects. The book is aimed primarily at senior undergraduate and graduatestudents studying statistical pattern recognition, patternprocessing, neural networks, and data mining, in both statisticsand engineering departments. It is also an excellent source ofreference for technical professionals working in advancedinformation development environments. For further information on the techniques and applicationsdiscussed in this book please visit ahref="http://www.statistical-pattern-recognition.net/"www.statistical-pattern-recognition.net/a
Book Synopsis Computational Intelligence and Healthcare Informatics by : Om Prakash Jena
Download or read book Computational Intelligence and Healthcare Informatics written by Om Prakash Jena and published by John Wiley & Sons. This book was released on 2021-10-19 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: COMPUTATIONAL INTELLIGENCE and HEALTHCARE INFORMATICS The book provides the state-of-the-art innovation, research, design, and implements methodological and algorithmic solutions to data processing problems, designing and analysing evolving trends in health informatics, intelligent disease prediction, and computer-aided diagnosis. Computational intelligence (CI) refers to the ability of computers to accomplish tasks that are normally completed by intelligent beings such as humans and animals. With the rapid advance of technology, artificial intelligence (AI) techniques are being effectively used in the fields of health to improve the efficiency of treatments, avoid the risk of false diagnoses, make therapeutic decisions, and predict the outcome in many clinical scenarios. Modern health treatments are faced with the challenge of acquiring, analyzing and applying the large amount of knowledge necessary to solve complex problems. Computational intelligence in healthcare mainly uses computer techniques to perform clinical diagnoses and suggest treatments. In the present scenario of computing, CI tools present adaptive mechanisms that permit the understanding of data in difficult and changing environments. The desired results of CI technologies profit medical fields by assembling patients with the same types of diseases or fitness problems so that healthcare facilities can provide effectual treatments. This book starts with the fundamentals of computer intelligence and the techniques and procedures associated with it. Contained in this book are state-of-the-art methods of computational intelligence and other allied techniques used in the healthcare system, as well as advances in different CI methods that will confront the problem of effective data analysis and storage faced by healthcare institutions. The objective of this book is to provide researchers with a platform encompassing state-of-the-art innovations; research and design; implementation of methodological and algorithmic solutions to data processing problems; and the design and analysis of evolving trends in health informatics, intelligent disease prediction and computer-aided diagnosis. Audience The book is of interest to artificial intelligence and biomedical scientists, researchers, engineers and students in various settings such as pharmaceutical & biotechnology companies, virtual assistants developing companies, medical imaging & diagnostics centers, wearable device designers, healthcare assistance robot manufacturers, precision medicine testers, hospital management, and researchers working in healthcare system.
Author :José Francisco Martínez-Trinidad Publisher :Springer Science & Business Media ISBN 13 :3540465561 Total Pages :1014 pages Book Rating :4.5/5 (44 download)
Book Synopsis Progress in Pattern Recognition, Image Analysis and Applications by : José Francisco Martínez-Trinidad
Download or read book Progress in Pattern Recognition, Image Analysis and Applications written by José Francisco Martínez-Trinidad and published by Springer Science & Business Media. This book was released on 2006-10-12 with total page 1014 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 11th Iberoamerican Congress on Pattern Recognition, CIARP 2006, held in Cancun, Mexico in November 2006. The 99 revised full papers presented together with three keynote articles were carefully reviewed and selected from 239 submissions. The papers cover ongoing research and mathematical methods.
Book Synopsis Pattern Recognition Algorithms for Data Mining by : Sankar K. Pal
Download or read book Pattern Recognition Algorithms for Data Mining written by Sankar K. Pal and published by CRC Press. This book was released on 2004-05-27 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pattern Recognition Algorithms for Data Mining addresses different pattern recognition (PR) tasks in a unified framework with both theoretical and experimental results. Tasks covered include data condensation, feature selection, case generation, clustering/classification, and rule generation and evaluation. This volume presents various theories, methodologies, and algorithms, using both classical approaches and hybrid paradigms. The authors emphasize large datasets with overlapping, intractable, or nonlinear boundary classes, and datasets that demonstrate granular computing in soft frameworks. Organized into eight chapters, the book begins with an introduction to PR, data mining, and knowledge discovery concepts. The authors analyze the tasks of multi-scale data condensation and dimensionality reduction, then explore the problem of learning with support vector machine (SVM). They conclude by highlighting the significance of granular computing for different mining tasks in a soft paradigm.
Book Synopsis Feature Engineering and Selection by : Max Kuhn
Download or read book Feature Engineering and Selection written by Max Kuhn and published by CRC Press. This book was released on 2019-07-25 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: The process of developing predictive models includes many stages. Most resources focus on the modeling algorithms but neglect other critical aspects of the modeling process. This book describes techniques for finding the best representations of predictors for modeling and for nding the best subset of predictors for improving model performance. A variety of example data sets are used to illustrate the techniques along with R programs for reproducing the results.
Book Synopsis Supervised and Unsupervised Pattern Recognition by : Evangelia Miche Tzanakou
Download or read book Supervised and Unsupervised Pattern Recognition written by Evangelia Miche Tzanakou and published by CRC Press. This book was released on 2017-12-19 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are many books on neural networks, some of which cover computational intelligence, but none that incorporate both feature extraction and computational intelligence, as Supervised and Unsupervised Pattern Recognition does. This volume describes the application of a novel, unsupervised pattern recognition scheme to the classification of various types of waveforms and images. This substantial collection of recent research begins with an introduction to Neural Networks, classifiers, and feature extraction methods. It then addresses unsupervised and fuzzy neural networks and their applications to handwritten character recognition and recognition of normal and abnormal visual evoked potentials. The third section deals with advanced neural network architectures-including modular design-and their applications to medicine and three-dimensional NN architecture simulating brain functions. The final section discusses general applications and simulations, such as the establishment of a brain-computer link, speaker identification, and face recognition. In the quickly changing field of computational intelligence, every discovery is significant. Supervised and Unsupervised Pattern Recognition gives you access to many notable findings in one convenient volume.
Book Synopsis Machine Learning and Knowledge Discovery in Databases by : Walter Daelemans
Download or read book Machine Learning and Knowledge Discovery in Databases written by Walter Daelemans and published by Springer Science & Business Media. This book was released on 2008-09-04 with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the joint conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2008, held in Antwerp, Belgium, in September 2008. The 100 papers presented in two volumes, together with 5 invited talks, were carefully reviewed and selected from 521 submissions. In addition to the regular papers the volume contains 14 abstracts of papers appearing in full version in the Machine Learning Journal and the Knowledge Discovery and Databases Journal of Springer. The conference intends to provide an international forum for the discussion of the latest high quality research results in all areas related to machine learning and knowledge discovery in databases. The topics addressed are application of machine learning and data mining methods to real-world problems, particularly exploratory research that describes novel learning and mining tasks and applications requiring non-standard techniques.
Book Synopsis Hyperspectral Image Analysis by : Saurabh Prasad
Download or read book Hyperspectral Image Analysis written by Saurabh Prasad and published by Springer Nature. This book was released on 2020-04-27 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models, anomalous change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding. It presents research from leading international experts who have made foundational contributions in these areas. The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas of image analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, geosciences and biomedical image processing, who work with multi-channel optical data will find this book useful.
Book Synopsis Pattern Recognition and Machine Learning by : Christopher M. Bishop
Download or read book Pattern Recognition and Machine Learning written by Christopher M. Bishop and published by Springer. This book was released on 2016-08-23 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.