Weighted Sobolev Spaces

Download Weighted Sobolev Spaces PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 130 pages
Book Rating : 4.:/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Weighted Sobolev Spaces by : Alois Kufner

Download or read book Weighted Sobolev Spaces written by Alois Kufner and published by . This book was released on 1985-07-23 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: A systematic account of the subject, this book deals with properties and applications of the Sobolev spaces with weights, the weight function being dependent on the distance of a point of the definition domain from the boundary of the domain or from its parts. After an introduction of definitions, examples and auxilliary results, it describes the study of properties of Sobolev spaces with power-type weights, and analogous problems for weights of a more general type. The concluding chapter addresses applications of weighted spaces to the solution of the Dirichlet problem for an elliptic linear differential operator.

Nonlinear Potential Theory and Weighted Sobolev Spaces

Download Nonlinear Potential Theory and Weighted Sobolev Spaces PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540451684
Total Pages : 188 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Potential Theory and Weighted Sobolev Spaces by : Bengt O. Turesson

Download or read book Nonlinear Potential Theory and Weighted Sobolev Spaces written by Bengt O. Turesson and published by Springer. This book was released on 2007-05-06 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book systematically develops the nonlinear potential theory connected with the weighted Sobolev spaces, where the weight usually belongs to Muckenhoupt's class of Ap weights. These spaces occur as solutions spaces for degenerate elliptic partial differential equations. The Sobolev space theory covers results concerning approximation, extension, and interpolation, Sobolev and Poincaré inequalities, Maz'ya type embedding theorems, and isoperimetric inequalities. In the chapter devoted to potential theory, several weighted capacities are investigated. Moreover, "Kellogg lemmas" are established for various concepts of thinness. Applications of potential theory to weighted Sobolev spaces include quasi continuity of Sobolev functions, Poincaré inequalities, and spectral synthesis theorems.

Sobolev Spaces

Download Sobolev Spaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642155642
Total Pages : 882 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Sobolev Spaces by : Vladimir Maz'ya

Download or read book Sobolev Spaces written by Vladimir Maz'ya and published by Springer Science & Business Media. This book was released on 2011-02-11 with total page 882 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sobolev spaces play an outstanding role in modern analysis, in particular, in the theory of partial differential equations and its applications in mathematical physics. They form an indispensable tool in approximation theory, spectral theory, differential geometry etc. The theory of these spaces is of interest in itself being a beautiful domain of mathematics. The present volume includes basics on Sobolev spaces, approximation and extension theorems, embedding and compactness theorems, their relations with isoperimetric and isocapacitary inequalities, capacities with applications to spectral theory of elliptic differential operators as well as pointwise inequalities for derivatives. The selection of topics is mainly influenced by the author’s involvement in their study, a considerable part of the text is a report on his work in the field. Part of this volume first appeared in German as three booklets of Teubner-Texte zur Mathematik (1979, 1980). In the Springer volume “Sobolev Spaces”, published in English in 1985, the material was expanded and revised. The present 2nd edition is enhanced by many recent results and it includes new applications to linear and nonlinear partial differential equations. New historical comments, five new chapters and a significantly augmented list of references aim to create a broader and modern view of the area.

Sobolev Spaces

Download Sobolev Spaces PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080541291
Total Pages : 321 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Sobolev Spaces by : Robert A. Adams

Download or read book Sobolev Spaces written by Robert A. Adams and published by Elsevier. This book was released on 2003-06-26 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sobolev Spaces presents an introduction to the theory of Sobolev Spaces and other related spaces of function, also to the imbedding characteristics of these spaces. This theory is widely used in pure and Applied Mathematics and in the Physical Sciences. This second edition of Adam's 'classic' reference text contains many additions and much modernizing and refining of material. The basic premise of the book remains unchanged: Sobolev Spaces is intended to provide a solid foundation in these spaces for graduate students and researchers alike. - Self-contained and accessible for readers in other disciplines - Written at elementary level making it accessible to graduate students

Function Spaces and Applications

Download Function Spaces and Applications PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9780849309380
Total Pages : 296 pages
Book Rating : 4.3/5 (93 download)

DOWNLOAD NOW!


Book Synopsis Function Spaces and Applications by : David Eric Edmunds

Download or read book Function Spaces and Applications written by David Eric Edmunds and published by CRC Press. This book was released on 2000 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developed from the proceedings an international conference held in 1997, Function Spaces and Applications presents the work of leading mathematicians in the vital and rapidly growing field of functional analysis.

Sobolev Spaces

Download Sobolev Spaces PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3662099225
Total Pages : 506 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Sobolev Spaces by : Vladimir Maz'ya

Download or read book Sobolev Spaces written by Vladimir Maz'ya and published by Springer. This book was released on 2013-12-21 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Sobolev spaces, i. e. the classes of functions with derivatives in L , occupy p an outstanding place in analysis. During the last two decades a substantial contribution to the study of these spaces has been made; so now solutions to many important problems connected with them are known. In the present monograph we consider various aspects of Sobolev space theory. Attention is paid mainly to the so called imbedding theorems. Such theorems, originally established by S. L. Sobolev in the 1930s, proved to be a useful tool in functional analysis and in the theory of linear and nonlinear par tial differential equations. We list some questions considered in this book. 1. What are the requirements on the measure f1, for the inequality q

Functional Inequalities: New Perspectives and New Applications

Download Functional Inequalities: New Perspectives and New Applications PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821891529
Total Pages : 331 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Functional Inequalities: New Perspectives and New Applications by : Nassif Ghoussoub

Download or read book Functional Inequalities: New Perspectives and New Applications written by Nassif Ghoussoub and published by American Mathematical Soc.. This book was released on 2013-04-09 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The book describes how functional inequalities are often manifestations of natural mathematical structures and physical phenomena, and how a few general principles validate large classes of analytic/geometric inequalities, old and new. This point of view leads to "systematic" approaches for proving the most basic inequalities, but also for improving them, and for devising new ones--sometimes at will and often on demand. These general principles also offer novel ways for estimating best constants and for deciding whether these are attained in appropriate function spaces. As such, improvements of Hardy and Hardy-Rellich type inequalities involving radially symmetric weights are variational manifestations of Sturm's theory on the oscillatory behavior of certain ordinary differential equations. On the other hand, most geometric inequalities, including those of Sobolev and Log-Sobolev type, are simply expressions of the convexity of certain free energy functionals along the geodesics on the Wasserstein manifold of probability measures equipped with the optimal mass transport metric. Caffarelli-Kohn-Nirenberg and Hardy-Rellich-Sobolev type inequalities are then obtained by interpolating the above two classes of inequalities via the classical ones of Hölder. The subtle Moser-Onofri-Aubin inequalities on the two-dimensional sphere are connected to Liouville type theorems for planar mean field equations."--Publisher's website.

Quasilinear Elliptic Equations with Degenerations and Singularities

Download Quasilinear Elliptic Equations with Degenerations and Singularities PDF Online Free

Author :
Publisher : Walter de Gruyter
ISBN 13 : 3110804778
Total Pages : 233 pages
Book Rating : 4.1/5 (18 download)

DOWNLOAD NOW!


Book Synopsis Quasilinear Elliptic Equations with Degenerations and Singularities by : Pavel Drábek

Download or read book Quasilinear Elliptic Equations with Degenerations and Singularities written by Pavel Drábek and published by Walter de Gruyter. This book was released on 2011-07-22 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series is devoted to the publication of high-level monographs which cover the whole spectrum of current nonlinear analysis and applications in various fields, such as optimization, control theory, systems theory, mechanics, engineering, and other sciences. One of its main objectives is to make available to the professional community expositions of results and foundations of methods that play an important role in both the theory and applications of nonlinear analysis. Contributions which are on the borderline of nonlinear analysis and related fields and which stimulate further research at the crossroads of these areas are particularly welcome. Please submit book proposals to Jürgen Appell.

Sobolev Spaces on Metric Measure Spaces

Download Sobolev Spaces on Metric Measure Spaces PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107092345
Total Pages : 447 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Sobolev Spaces on Metric Measure Spaces by : Juha Heinonen

Download or read book Sobolev Spaces on Metric Measure Spaces written by Juha Heinonen and published by Cambridge University Press. This book was released on 2015-02-05 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: This coherent treatment from first principles is an ideal introduction for graduate students and a useful reference for experts.

Maximal Function Methods for Sobolev Spaces

Download Maximal Function Methods for Sobolev Spaces PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470465752
Total Pages : 354 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Maximal Function Methods for Sobolev Spaces by : Juha Kinnunen

Download or read book Maximal Function Methods for Sobolev Spaces written by Juha Kinnunen and published by American Mathematical Soc.. This book was released on 2021-08-02 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses advances in maximal function methods related to Poincaré and Sobolev inequalities, pointwise estimates and approximation for Sobolev functions, Hardy's inequalities, and partial differential equations. Capacities are needed for fine properties of Sobolev functions and characterization of Sobolev spaces with zero boundary values. The authors consider several uniform quantitative conditions that are self-improving, such as Hardy's inequalities, capacity density conditions, and reverse Hölder inequalities. They also study Muckenhoupt weight properties of distance functions and combine these with weighted norm inequalities; notions of dimension are then used to characterize density conditions and to give sufficient and necessary conditions for Hardy's inequalities. At the end of the book, the theory of weak solutions to the p p-Laplace equation and the use of maximal function techniques is this context are discussed. The book is directed to researchers and graduate students interested in applications of geometric and harmonic analysis in Sobolev spaces and partial differential equations.

Besov Regularity of Stochastic Partial Differential Equations on Bounded Lipschitz Domains

Download Besov Regularity of Stochastic Partial Differential Equations on Bounded Lipschitz Domains PDF Online Free

Author :
Publisher : Logos Verlag Berlin GmbH
ISBN 13 : 3832539204
Total Pages : 166 pages
Book Rating : 4.8/5 (325 download)

DOWNLOAD NOW!


Book Synopsis Besov Regularity of Stochastic Partial Differential Equations on Bounded Lipschitz Domains by : Petru A. Cioica

Download or read book Besov Regularity of Stochastic Partial Differential Equations on Bounded Lipschitz Domains written by Petru A. Cioica and published by Logos Verlag Berlin GmbH. This book was released on 2015-03-01 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic partial differential equations (SPDEs, for short) are the mathematical models of choice for space time evolutions corrupted by noise. Although in many settings it is known that the resulting SPDEs have a unique solution, in general, this solution is not given explicitly. Thus, in order to make those mathematical models ready to use for real life applications, appropriate numerical algorithms are needed. To increase efficiency, it would be tempting to design suitable adaptive schemes based, e.g., on wavelets. However, it is not a priori clear whether such adaptive strategies can outperform well-established uniform alternatives. Their theoretical justification requires a rigorous regularity analysis in so-called non-linear approximation scales of Besov spaces. In this thesis the regularity of (semi-)linear second order SPDEs of Itô type on general bounded Lipschitz domains is analysed. The non-linear approximation scales of Besov spaces are used to measure the regularity with respect to the space variable, the time regularity being measured first in terms of integrability and afterwards in terms of Hölder norms. In particular, it is shown that in specific situations the spatial Besov regularity of the solution in the non-linear approximation scales is generically higher than its corresponding classical Sobolev regularity. This indicates that it is worth developing spatially adaptive wavelet methods for solving SPDEs instead of using uniform alternatives.

Probability Theory, Function Theory, Mechanics

Download Probability Theory, Function Theory, Mechanics PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821831328
Total Pages : 338 pages
Book Rating : 4.8/5 (313 download)

DOWNLOAD NOW!


Book Synopsis Probability Theory, Function Theory, Mechanics by : I︠U︡riĭ Vasilʹevich Prokhorov

Download or read book Probability Theory, Function Theory, Mechanics written by I︠U︡riĭ Vasilʹevich Prokhorov and published by American Mathematical Soc.. This book was released on 1990 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a translation of the fifth and final volume in a special cycle of publications in commemoration of the 50th anniversary of the Steklov Mathematical Institute of the Academy of Sciences in the USSR. The purpose of the special cycle was to present surveys of work on certain important trends and problems pursued at the Institute. Because the choice of the form and character of the surveys were left up to the authors, the surveys do not necessarily form a comprehensive overview, but rather represent the authors' perspectives on the important developments.

Analysis and Topology in Nonlinear Differential Equations

Download Analysis and Topology in Nonlinear Differential Equations PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319042149
Total Pages : 465 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Analysis and Topology in Nonlinear Differential Equations by : Djairo G de Figueiredo

Download or read book Analysis and Topology in Nonlinear Differential Equations written by Djairo G de Figueiredo and published by Springer. This book was released on 2014-06-16 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a collection of articles presented at the Workshop for Nonlinear Analysis held in João Pessoa, Brazil, in September 2012. The influence of Bernhard Ruf, to whom this volume is dedicated on the occasion of his 60th birthday, is perceptible throughout the collection by the choice of themes and techniques. The many contributors consider modern topics in the calculus of variations, topological methods and regularity analysis, together with novel applications of partial differential equations. In keeping with the tradition of the workshop, emphasis is given to elliptic operators inserted in different contexts, both theoretical and applied. Topics include semi-linear and fully nonlinear equations and systems with different nonlinearities, at sub- and supercritical exponents, with spectral interactions of Ambrosetti-Prodi type. Also treated are analytic aspects as well as applications such as diffusion problems in mathematical genetics and finance and evolution equations related to electromechanical devices.

Elliptic Boundary Value Problems of Second Order in Piecewise Smooth Domains

Download Elliptic Boundary Value Problems of Second Order in Piecewise Smooth Domains PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080461735
Total Pages : 538 pages
Book Rating : 4.0/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Elliptic Boundary Value Problems of Second Order in Piecewise Smooth Domains by : Michail Borsuk

Download or read book Elliptic Boundary Value Problems of Second Order in Piecewise Smooth Domains written by Michail Borsuk and published by Elsevier. This book was released on 2006-01-12 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book contains a systematic treatment of the qualitative theory of elliptic boundary value problems for linear and quasilinear second order equations in non-smooth domains. The authors concentrate on the following fundamental results: sharp estimates for strong and weak solutions, solvability of the boundary value problems, regularity assertions for solutions near singular points.Key features:* New the Hardy – Friedrichs – Wirtinger type inequalities as well as new integral inequalities related to the Cauchy problem for a differential equation.* Precise exponents of the solution decreasing rate near boundary singular points and best possible conditions for this.* The question about the influence of the coefficients smoothness on the regularity of solutions.* New existence theorems for the Dirichlet problem for linear and quasilinear equations in domains with conical points.* The precise power modulus of continuity at singular boundary point for solutions of the Dirichlet, mixed and the Robin problems.* The behaviour of weak solutions near conical point for the Dirichlet problem for m – Laplacian.* The behaviour of weak solutions near a boundary edge for the Dirichlet and mixed problem for elliptic quasilinear equations with triple degeneration.* Precise exponents of the solution decreasing rate near boundary singular points and best possible conditions for this.* The question about the influence of the coefficients smoothness on the regularity of solutions.* New existence theorems for the Dirichlet problem for linear and quasilinear equations in domains with conical points.* The precise power modulus of continuity at singular boundary point for solutions of the Dirichlet, mixed and the Robin problems.* The behaviour of weak solutions near conical point for the Dirichlet problem for m - Laplacian.* The behaviour of weak solutions near a boundary edge for the Dirichlet and mixed problem for elliptic quasilinear equations with triple degeneration.

Some Applications of Functional Analysis in Mathematical Physics

Download Some Applications of Functional Analysis in Mathematical Physics PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821898321
Total Pages : 300 pages
Book Rating : 4.8/5 (983 download)

DOWNLOAD NOW!


Book Synopsis Some Applications of Functional Analysis in Mathematical Physics by : S. L. Sobolev

Download or read book Some Applications of Functional Analysis in Mathematical Physics written by S. L. Sobolev and published by American Mathematical Soc.. This book was released on 2008-04-14 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Special problems of functional analysis Variational methods in mathematical physics The theory of hyperbolic partial differential equations Comments Appendix: Methode nouvelle a resoudre le probleme de Cauchy pour les equations lineaires hyperboliques normales Comments on the appendix Bibliography Index

Elliptic Equations in Polyhedral Domains

Download Elliptic Equations in Polyhedral Domains PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821849832
Total Pages : 618 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Elliptic Equations in Polyhedral Domains by : V. G. Maz_i_a

Download or read book Elliptic Equations in Polyhedral Domains written by V. G. Maz_i_a and published by American Mathematical Soc.. This book was released on 2010-04-22 with total page 618 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first monograph which systematically treats elliptic boundary value problems in domains of polyhedral type. The authors mainly describe their own recent results focusing on the Dirichlet problem for linear strongly elliptic systems of arbitrary order, Neumann and mixed boundary value problems for second order systems, and on boundary value problems for the stationary Stokes and Navier-Stokes systems. A feature of the book is the systematic use of Green's matrices. Using estimates for the elements of these matrices, the authors obtain solvability and regularity theorems for the solutions in weighted and non-weighted Sobolev and Holder spaces. Some classical problems of mathematical physics (Laplace and biharmonic equations, Lame system) are considered as examples. Furthermore, the book contains maximum modulus estimates for the solutions and their derivatives. The exposition is self-contained, and an introductory chapter provides background material on the theory of elliptic boundary value problems in domains with smooth boundaries and in domains with conical points. The book is destined for graduate students and researchers working in elliptic partial differential equations and applications.

Hardy Operators, Function Spaces and Embeddings

Download Hardy Operators, Function Spaces and Embeddings PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662077310
Total Pages : 334 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Hardy Operators, Function Spaces and Embeddings by : David E. Edmunds

Download or read book Hardy Operators, Function Spaces and Embeddings written by David E. Edmunds and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Classical Sobolev spaces, based on Lebesgue spaces on an underlying domain with smooth boundary, are not only of considerable intrinsic interest but have for many years proved to be indispensible in the study of partial differential equations and variational problems. Many developments of the basic theory since its inception arise in response to concrete problems, for example, with the (ubiquitous) sets with fractal boundaries. The theory will probably enjoy substantial further growth, but even now a connected account of the mature parts of it makes a useful addition to the literature. Accordingly, the main themes of this book are Banach spaces and spaces of Sobolev type based on them; integral operators of Hardy type on intervals and on trees; and the distribution of the approximation numbers (singular numbers in the Hilbert space case) of embeddings of Sobolev spaces based on generalised ridged domains. This timely book will be of interest to all those concerned with the partial differential equations and their ramifications. A prerequisite for reading it is a good graduate course in real analysis.