Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Category Theory Homology Theory And Their Applications
Download Category Theory Homology Theory And Their Applications full books in PDF, epub, and Kindle. Read online Category Theory Homology Theory And Their Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Category Theory And Applications: A Textbook For Beginners (Second Edition) by : Marco Grandis
Download or read book Category Theory And Applications: A Textbook For Beginners (Second Edition) written by Marco Grandis and published by World Scientific. This book was released on 2021-03-05 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: Category Theory now permeates most of Mathematics, large parts of theoretical Computer Science and parts of theoretical Physics. Its unifying power brings together different branches, and leads to a better understanding of their roots.This book is addressed to students and researchers of these fields and can be used as a text for a first course in Category Theory. It covers the basic tools, like universal properties, limits, adjoint functors and monads. These are presented in a concrete way, starting from examples and exercises taken from elementary Algebra, Lattice Theory and Topology, then developing the theory together with new exercises and applications.A reader should have some elementary knowledge of these three subjects, or at least two of them, in order to be able to follow the main examples, appreciate the unifying power of the categorical approach, and discover the subterranean links brought to light and formalised by this perspective.Applications of Category Theory form a vast and differentiated domain. This book wants to present the basic applications in Algebra and Topology, with a choice of more advanced ones, based on the interests of the author. References are given for applications in many other fields.In this second edition, the book has been entirely reviewed, adding many applications and exercises. All non-obvious exercises have now a solution (or a reference, in the case of an advanced topic); solutions are now collected in the last chapter.
Book Synopsis Category Theory in Context by : Emily Riehl
Download or read book Category Theory in Context written by Emily Riehl and published by Courier Dover Publications. This book was released on 2017-03-09 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to concepts of category theory — categories, functors, natural transformations, the Yoneda lemma, limits and colimits, adjunctions, monads — revisits a broad range of mathematical examples from the categorical perspective. 2016 edition.
Book Synopsis Algebra: Chapter 0 by : Paolo Aluffi
Download or read book Algebra: Chapter 0 written by Paolo Aluffi and published by American Mathematical Soc.. This book was released on 2021-11-09 with total page 713 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.
Book Synopsis Computational Homology by : Tomasz Kaczynski
Download or read book Computational Homology written by Tomasz Kaczynski and published by Springer Science & Business Media. This book was released on 2006-04-18 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Homology is a powerful tool used by mathematicians to study the properties of spaces and maps that are insensitive to small perturbations. This book uses a computer to develop a combinatorial computational approach to the subject. The core of the book deals with homology theory and its computation. Following this is a section containing extensions to further developments in algebraic topology, applications to computational dynamics, and applications to image processing. Included are exercises and software that can be used to compute homology groups and maps. The book will appeal to researchers and graduate students in mathematics, computer science, engineering, and nonlinear dynamics.
Book Synopsis Basic Category Theory by : Tom Leinster
Download or read book Basic Category Theory written by Tom Leinster and published by Cambridge University Press. This book was released on 2014-07-24 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: A short introduction ideal for students learning category theory for the first time.
Book Synopsis From Categories to Homotopy Theory by : Birgit Richter
Download or read book From Categories to Homotopy Theory written by Birgit Richter and published by Cambridge University Press. This book was released on 2020-04-16 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Category theory provides structure for the mathematical world and is seen everywhere in modern mathematics. With this book, the author bridges the gap between pure category theory and its numerous applications in homotopy theory, providing the necessary background information to make the subject accessible to graduate students or researchers with a background in algebraic topology and algebra. The reader is first introduced to category theory, starting with basic definitions and concepts before progressing to more advanced themes. Concrete examples and exercises illustrate the topics, ranging from colimits to constructions such as the Day convolution product. Part II covers important applications of category theory, giving a thorough introduction to simplicial objects including an account of quasi-categories and Segal sets. Diagram categories play a central role throughout the book, giving rise to models of iterated loop spaces, and feature prominently in functor homology and homology of small categories.
Book Synopsis Categorical Homotopy Theory by : Emily Riehl
Download or read book Categorical Homotopy Theory written by Emily Riehl and published by Cambridge University Press. This book was released on 2014-05-26 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops abstract homotopy theory from the categorical perspective with a particular focus on examples. Part I discusses two competing perspectives by which one typically first encounters homotopy (co)limits: either as derived functors definable when the appropriate diagram categories admit a compatible model structure, or through particular formulae that give the right notion in certain examples. Emily Riehl unifies these seemingly rival perspectives and demonstrates that model structures on diagram categories are irrelevant. Homotopy (co)limits are explained to be a special case of weighted (co)limits, a foundational topic in enriched category theory. In Part II, Riehl further examines this topic, separating categorical arguments from homotopical ones. Part III treats the most ubiquitous axiomatic framework for homotopy theory - Quillen's model categories. Here, Riehl simplifies familiar model categorical lemmas and definitions by focusing on weak factorization systems. Part IV introduces quasi-categories and homotopy coherence.
Book Synopsis Towards Higher Categories by : John C. Baez
Download or read book Towards Higher Categories written by John C. Baez and published by Springer Science & Business Media. This book was released on 2009-09-24 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to give background for those who would like to delve into some higher category theory. It is not a primer on higher category theory itself. It begins with a paper by John Baez and Michael Shulman which explores informally, by analogy and direct connection, how cohomology and other tools of algebraic topology are seen through the eyes of n-category theory. The idea is to give some of the motivations behind this subject. There are then two survey articles, by Julie Bergner and Simona Paoli, about (infinity,1) categories and about the algebraic modelling of homotopy n-types. These are areas that are particularly well understood, and where a fully integrated theory exists. The main focus of the book is on the richness to be found in the theory of bicategories, which gives the essential starting point towards the understanding of higher categorical structures. An article by Stephen Lack gives a thorough, but informal, guide to this theory. A paper by Larry Breen on the theory of gerbes shows how such categorical structures appear in differential geometry. This book is dedicated to Max Kelly, the founder of the Australian school of category theory, and an historical paper by Ross Street describes its development.
Download or read book Homology Theory written by James W. Vick and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to some basic ideas in algebraic topology is devoted to the foundations and applications of homology theory. After the essentials of singular homology and some important applications are given, successive topics covered include attaching spaces, finite CW complexes, cohomology products, manifolds, Poincare duality, and fixed point theory. This second edition includes a chapter on covering spaces and many new exercises.
Book Synopsis The Convenient Setting of Global Analysis by : Andreas Kriegl
Download or read book The Convenient Setting of Global Analysis written by Andreas Kriegl and published by American Mathematical Society. This book was released on 2024-08-15 with total page 631 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory. The approach is simple: a mapping is called smooth if it maps smooth curves to smooth curves. Up to Fr‚chet spaces, this notion of smoothness coincides with all known reasonable concepts. In the same spirit, calculus of holomorphic mappings (including Hartogs' theorem and holomorphic uniform boundedness theorems) and calculus of real analytic mappings are developed. Existence of smooth partitions of unity, the foundations of manifold theory in infinite dimensions, the relation between tangent vectors and derivations, and differential forms are discussed thoroughly. Special emphasis is given to the notion of regular infinite dimensional Lie groups. Many applications of this theory are included: manifolds of smooth mappings, groups of diffeomorphisms, geodesics on spaces of Riemannian metrics, direct limit manifolds, perturbation theory of operators, and differentiability questions of infinite dimensional representations.
Book Synopsis An Invitation to Applied Category Theory by : Brendan Fong
Download or read book An Invitation to Applied Category Theory written by Brendan Fong and published by Cambridge University Press. This book was released on 2019-07-18 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: Category theory is unmatched in its ability to organize and layer abstractions and to find commonalities between structures of all sorts. No longer the exclusive preserve of pure mathematicians, it is now proving itself to be a powerful tool in science, informatics, and industry. By facilitating communication between communities and building rigorous bridges between disparate worlds, applied category theory has the potential to be a major organizing force. This book offers a self-contained tour of applied category theory. Each chapter follows a single thread motivated by a real-world application and discussed with category-theoretic tools. We see data migration as an adjoint functor, electrical circuits in terms of monoidal categories and operads, and collaborative design via enriched profunctors. All the relevant category theory, from simple to sophisticated, is introduced in an accessible way with many examples and exercises, making this an ideal guide even for those without experience of university-level mathematics.
Book Synopsis Algebraic Topology by : Tammo tom Dieck
Download or read book Algebraic Topology written by Tammo tom Dieck and published by European Mathematical Society. This book was released on 2008 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is written as a textbook on algebraic topology. The first part covers the material for two introductory courses about homotopy and homology. The second part presents more advanced applications and concepts (duality, characteristic classes, homotopy groups of spheres, bordism). The author recommends starting an introductory course with homotopy theory. For this purpose, classical results are presented with new elementary proofs. Alternatively, one could start more traditionally with singular and axiomatic homology. Additional chapters are devoted to the geometry of manifolds, cell complexes and fibre bundles. A special feature is the rich supply of nearly 500 exercises and problems. Several sections include topics which have not appeared before in textbooks as well as simplified proofs for some important results. Prerequisites are standard point set topology (as recalled in the first chapter), elementary algebraic notions (modules, tensor product), and some terminology from category theory. The aim of the book is to introduce advanced undergraduate and graduate (master's) students to basic tools, concepts and results of algebraic topology. Sufficient background material from geometry and algebra is included.
Book Synopsis What is Category Theory? by : Giandomenico Sica
Download or read book What is Category Theory? written by Giandomenico Sica and published by Polimetrica s.a.s.. This book was released on 2006 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Category Theory written by Steve Awodey and published by Oxford University Press. This book was released on 2010-06-17 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive reference to category theory for students and researchers in mathematics, computer science, logic, cognitive science, linguistics, and philosophy. Useful for self-study and as a course text, the book includes all basic definitions and theorems (with full proofs), as well as numerous examples and exercises.
Book Synopsis Algebra, Topology, and Category Theory by : Samuel Eilenberg
Download or read book Algebra, Topology, and Category Theory written by Samuel Eilenberg and published by . This book was released on 1976 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Mal'cev, Protomodular, Homological and Semi-Abelian Categories by : Francis Borceux
Download or read book Mal'cev, Protomodular, Homological and Semi-Abelian Categories written by Francis Borceux and published by Springer Science & Business Media. This book was released on 2004-02-29 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of the book is to take stock of the situation concerning Algebra via Category Theory in the last fifteen years, where the new and synthetic notions of Mal'cev, protomodular, homological and semi-abelian categories emerged. These notions force attention on the fibration of points and allow a unified treatment of the main algebraic: homological lemmas, Noether isomorphisms, commutator theory. The book gives full importance to examples and makes strong connections with Universal Algebra. One of its aims is to allow appreciating how productive the essential categorical constraint is: knowing an object, not from inside via its elements, but from outside via its relations with its environment. The book is intended to be a powerful tool in the hands of researchers in category theory, homology theory and universal algebra, as well as a textbook for graduate courses on these topics.
Book Synopsis Applications of Algebraic Topology by : S. Lefschetz
Download or read book Applications of Algebraic Topology written by S. Lefschetz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is based, in part, upon lectures given in the Princeton School of Engineering and Applied Science. It presupposes mainly an elementary knowledge of linear algebra and of topology. In topology the limit is dimension two mainly in the latter chapters and questions of topological invariance are carefully avoided. From the technical viewpoint graphs is our only requirement. However, later, questions notably related to Kuratowski's classical theorem have demanded an easily provided treatment of 2-complexes and surfaces. January 1972 Solomon Lefschetz 4 INTRODUCTION The study of electrical networks rests upon preliminary theory of graphs. In the literature this theory has always been dealt with by special ad hoc methods. My purpose here is to show that actually this theory is nothing else than the first chapter of classical algebraic topology and may be very advantageously treated as such by the well known methods of that science. Part I of this volume covers the following ground: The first two chapters present, mainly in outline, the needed basic elements of linear algebra. In this part duality is dealt with somewhat more extensively. In Chapter III the merest elements of general topology are discussed. Graph theory proper is covered in Chapters IV and v, first structurally and then as algebra. Chapter VI discusses the applications to networks. In Chapters VII and VIII the elements of the theory of 2-dimensional complexes and surfaces are presented.