Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Calculus A Rigorous First Course
Download Calculus A Rigorous First Course full books in PDF, epub, and Kindle. Read online Calculus A Rigorous First Course ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Calculus: A Rigorous First Course by : Daniel J. Velleman
Download or read book Calculus: A Rigorous First Course written by Daniel J. Velleman and published by Courier Dover Publications. This book was released on 2017-01-18 with total page 737 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed for undergraduate mathematics majors, this rigorous and rewarding treatment covers the usual topics of first-year calculus: limits, derivatives, integrals, and infinite series. Author Daniel J. Velleman focuses on calculus as a tool for problem solving rather than the subject's theoretical foundations. Stressing a fundamental understanding of the concepts of calculus instead of memorized procedures, this volume teaches problem solving by reasoning, not just calculation. The goal of the text is an understanding of calculus that is deep enough to allow the student to not only find answers to problems, but also achieve certainty of the answers' correctness. No background in calculus is necessary. Prerequisites include proficiency in basic algebra and trigonometry, and a concise review of both areas provides sufficient background. Extensive problem material appears throughout the text and includes selected answers. Complete solutions are available to instructors.
Book Synopsis Calculus: A Rigorous First Course by : Daniel J. Velleman
Download or read book Calculus: A Rigorous First Course written by Daniel J. Velleman and published by Courier Dover Publications. This book was released on 2017-01-05 with total page 737 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rigorous and rewarding text for undergraduate math majors covers usual topics of first-year calculus: limits, derivatives, integrals, and infinite series. Requires only background in algebra and trigonometry. Solutions available to instructors. 2016 edition.
Book Synopsis A First Course in Calculus by : Serge Lang
Download or read book A First Course in Calculus written by Serge Lang and published by Springer Science & Business Media. This book was released on 2012-09-17 with total page 741 pages. Available in PDF, EPUB and Kindle. Book excerpt: This fifth edition of Lang's book covers all the topics traditionally taught in the first-year calculus sequence. Divided into five parts, each section of A FIRST COURSE IN CALCULUS contains examples and applications relating to the topic covered. In addition, the rear of the book contains detailed solutions to a large number of the exercises, allowing them to be used as worked-out examples -- one of the main improvements over previous editions.
Book Synopsis Calculus Deconstructed by : Zbigniew H. Nitecki
Download or read book Calculus Deconstructed written by Zbigniew H. Nitecki and published by American Mathematical Society. This book was released on 2022-01-11 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: Calculus Deconstructed is a thorough and mathematically rigorous exposition of single-variable calculus for readers with some previous exposure to calculus techniques but not to methods of proof. This book is appropriate for a beginning Honors Calculus course assuming high school calculus or a "bridge course" using basic analysis to motivate and illustrate mathematical rigor. It can serve as a combination textbook and reference book for individual self-study. Standard topics and techniques in single-variable calculus are presented in context of a coherent logical structure, building on familiar properties of real numbers and teaching methods of proof by example along the way. Numerous examples reinforce both practical and theoretical understanding, and extensive historical notes explore the arguments of the originators of the subject. No previous experience with mathematical proof is assumed: rhetorical strategies and techniques of proof (reductio ad absurdum, induction, contrapositives, etc.) are introduced by example along the way. Between the text and exercises, proofs are available for all the basic results of calculus for functions of one real variable.
Download or read book Short Calculus written by Serge Lang and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews "This is a reprint of the original edition of Lang’s ‘A First Course in Calculus’, which was first published in 1964....The treatment is ‘as rigorous as any mathematician would wish it’....[The exercises] are refreshingly simply stated, without any extraneous verbiage, and at times quite challenging....There are answers to all the exercises set and some supplementary problems on each topic to tax even the most able." --Mathematical Gazette
Download or read book Calculus written by Morris Kline and published by Courier Corporation. This book was released on 2013-05-09 with total page 962 pages. Available in PDF, EPUB and Kindle. Book excerpt: Application-oriented introduction relates the subject as closely as possible to science with explorations of the derivative; differentiation and integration of the powers of x; theorems on differentiation, antidifferentiation; the chain rule; trigonometric functions; more. Examples. 1967 edition.
Book Synopsis Calculus on Manifolds by : Michael Spivak
Download or read book Calculus on Manifolds written by Michael Spivak and published by Westview Press. This book was released on 1965 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book uses elementary versions of modern methods found in sophisticated mathematics to discuss portions of "advanced calculus" in which the subtlety of the concepts and methods makes rigor difficult to attain at an elementary level.
Book Synopsis Calculus in the First Three Dimensions by : Sherman K. Stein
Download or read book Calculus in the First Three Dimensions written by Sherman K. Stein and published by Courier Dover Publications. This book was released on 2016-03-15 with total page 644 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to calculus for both undergraduate math majors and those pursuing other areas of science and engineering for whom calculus will be a vital tool. Solutions available as free downloads. 1967 edition.
Book Synopsis Calculus of One Variable by : Joseph W. Kitchen
Download or read book Calculus of One Variable written by Joseph W. Kitchen and published by Courier Dover Publications. This book was released on 2020-01-15 with total page 804 pages. Available in PDF, EPUB and Kindle. Book excerpt: Richly textured and versatile text characterizes real numbers as a complete, ordered field. Rigorous development of the calculus, plus thorough treatment of basic topics of limits and inequalities. 1968 edition.
Book Synopsis The Fundamentals of Mathematical Analysis by : G. M. Fikhtengol'ts
Download or read book The Fundamentals of Mathematical Analysis written by G. M. Fikhtengol'ts and published by Elsevier. This book was released on 2014-08-01 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Fundamentals of Mathematical Analysis, Volume 2 is a continuation of the discussion of the fundamentals of mathematical analysis, specifically on the subject of curvilinear and surface integrals, with emphasis on the difference between the curvilinear and surface ""integrals of first kind"" and ""integrals of second kind."" The discussions in the book start with an introduction to the elementary concepts of series of numbers, infinite sequences and their limits, and the continuity of the sum of a series. The definition of improper integrals of unbounded functions and that of uniform convergence of integrals are explained. Curvilinear integrals of the first and second kinds are analyzed mathematically. The book then notes the application of surface integrals, through a parametric representation of a surface, and the calculation of the mass of a solid. The text also highlights that Green's formula, which connects a double integral over a plane domain with curvilinear integral along the contour of the domain, has an analogue in Ostrogradski's formula. The periodic values and harmonic analysis such as that found in the operation of a steam engine are analyzed. The volume ends with a note of further developments in mathematical analysis, which is a chronological presentation of important milestones in the history of analysis. The book is an ideal reference for mathematicians, students, and professors of calculus and advanced mathematics.
Book Synopsis A First Course in Stochastic Calculus by : Louis-Pierre Arguin
Download or read book A First Course in Stochastic Calculus written by Louis-Pierre Arguin and published by American Mathematical Society. This book was released on 2021-11-22 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: A First Course in Stochastic Calculus is a complete guide for advanced undergraduate students to take the next step in exploring probability theory and for master's students in mathematical finance who would like to build an intuitive and theoretical understanding of stochastic processes. This book is also an essential tool for finance professionals who wish to sharpen their knowledge and intuition about stochastic calculus. Louis-Pierre Arguin offers an exceptionally clear introduction to Brownian motion and to random processes governed by the principles of stochastic calculus. The beauty and power of the subject are made accessible to readers with a basic knowledge of probability, linear algebra, and multivariable calculus. This is achieved by emphasizing numerical experiments using elementary Python coding to build intuition and adhering to a rigorous geometric point of view on the space of random variables. This unique approach is used to elucidate the properties of Gaussian processes, martingales, and diffusions. One of the book's highlights is a detailed and self-contained account of stochastic calculus applications to option pricing in finance. Louis-Pierre Arguin's masterly introduction to stochastic calculus seduces the reader with its quietly conversational style; even rigorous proofs seem natural and easy. Full of insights and intuition, reinforced with many examples, numerical projects, and exercises, this book by a prize-winning mathematician and great teacher fully lives up to the author's reputation. I give it my strongest possible recommendation. —Jim Gatheral, Baruch College I happen to be of a different persuasion, about how stochastic processes should be taught to undergraduate and MA students. But I have long been thinking to go against my own grain at some point and try to teach the subject at this level—together with its applications to finance—in one semester. Louis-Pierre Arguin's excellent and artfully designed text will give me the ideal vehicle to do so. —Ioannis Karatzas, Columbia University, New York
Book Synopsis Advanced Calculus (Revised Edition) by : Lynn Harold Loomis
Download or read book Advanced Calculus (Revised Edition) written by Lynn Harold Loomis and published by World Scientific Publishing Company. This book was released on 2014-02-26 with total page 595 pages. Available in PDF, EPUB and Kindle. Book excerpt: An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
Book Synopsis A First Course in Analysis by : John B. Conway
Download or read book A First Course in Analysis written by John B. Conway and published by Cambridge University Press. This book was released on 2018 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: This concise text clearly presents the material needed for year-long analysis courses for advanced undergraduates or beginning graduates.
Book Synopsis Theoretical Statistics by : Robert W. Keener
Download or read book Theoretical Statistics written by Robert W. Keener and published by Springer Science & Business Media. This book was released on 2010-09-08 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended as the text for a sequence of advanced courses, this book covers major topics in theoretical statistics in a concise and rigorous fashion. The discussion assumes a background in advanced calculus, linear algebra, probability, and some analysis and topology. Measure theory is used, but the notation and basic results needed are presented in an initial chapter on probability, so prior knowledge of these topics is not essential. The presentation is designed to expose students to as many of the central ideas and topics in the discipline as possible, balancing various approaches to inference as well as exact, numerical, and large sample methods. Moving beyond more standard material, the book includes chapters introducing bootstrap methods, nonparametric regression, equivariant estimation, empirical Bayes, and sequential design and analysis. The book has a rich collection of exercises. Several of them illustrate how the theory developed in the book may be used in various applications. Solutions to many of the exercises are included in an appendix.
Download or read book Calculus written by Edwin E. Moise and published by . This book was released on 1972-02 with total page 763 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis A First Course in Calculus by : Serge Lang
Download or read book A First Course in Calculus written by Serge Lang and published by . This book was released on 1964 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Advanced Calculus by : Patrick Fitzpatrick
Download or read book Advanced Calculus written by Patrick Fitzpatrick and published by American Mathematical Soc.. This book was released on 2009 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Advanced Calculus is intended as a text for courses that furnish the backbone of the student's undergraduate education in mathematical analysis. The goal is to rigorously present the fundamental concepts within the context of illuminating examples and stimulating exercises. This book is self-contained and starts with the creation of basic tools using the completeness axiom. The continuity, differentiability, integrability, and power series representation properties of functions of a single variable are established. The next few chapters describe the topological and metric properties of Euclidean space. These are the basis of a rigorous treatment of differential calculus (including the Implicit Function Theorem and Lagrange Multipliers) for mappings between Euclidean spaces and integration for functions of several real variables."--pub. desc.