Boundary Value Problems for Transport Equations

Download Boundary Value Problems for Transport Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461219949
Total Pages : 295 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Boundary Value Problems for Transport Equations by : Valeri Agoshkov

Download or read book Boundary Value Problems for Transport Equations written by Valeri Agoshkov and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the modern theory of boundary value problems the following ap proach to investigation is agreed upon (we call it the functional approach): some functional spaces are chosen; the statements of boundary value prob the basis of these spaces; and the solvability of lems are formulated on the problems, properties of solutions, and their dependence on the original data of the problems are analyzed. These stages are put on the basis of the correct statement of different problems of mathematical physics (or of the definition of ill-posed problems). For example, if the solvability of a prob lem in the functional spaces chosen cannot be established then, probably, the reason is in their unsatisfactory choice. Then the analysis should be repeated employing other functional spaces. Elliptical problems can serve as an example of classical problems which are analyzed by this approach. Their investigations brought a number of new notions and results in the theory of Sobolev spaces W;(D) which, in turn, enabled us to create a sufficiently complete theory of solvability of elliptical equations. Nowadays the mathematical theory of radiative transfer problems and kinetic equations is an extensive area of modern mathematical physics. It has various applications in astrophysics, the theory of nuclear reactors, geophysics, the theory of chemical processes, semiconductor theory, fluid mechanics, etc. [25,29,31,39,40, 47, 52, 78, 83, 94, 98, 120, 124, 125, 135, 146].

Boundary Value Problems for Transport Equations

Download Boundary Value Problems for Transport Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780817639860
Total Pages : 304 pages
Book Rating : 4.6/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Boundary Value Problems for Transport Equations by : Valeri Agoshkov

Download or read book Boundary Value Problems for Transport Equations written by Valeri Agoshkov and published by Springer Science & Business Media. This book was released on 1998-09-29 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the modern theory of boundary value problems the following ap proach to investigation is agreed upon (we call it the functional approach): some functional spaces are chosen; the statements of boundary value prob the basis of these spaces; and the solvability of lems are formulated on the problems, properties of solutions, and their dependence on the original data of the problems are analyzed. These stages are put on the basis of the correct statement of different problems of mathematical physics (or of the definition of ill-posed problems). For example, if the solvability of a prob lem in the functional spaces chosen cannot be established then, probably, the reason is in their unsatisfactory choice. Then the analysis should be repeated employing other functional spaces. Elliptical problems can serve as an example of classical problems which are analyzed by this approach. Their investigations brought a number of new notions and results in the theory of Sobolev spaces W;(D) which, in turn, enabled us to create a sufficiently complete theory of solvability of elliptical equations. Nowadays the mathematical theory of radiative transfer problems and kinetic equations is an extensive area of modern mathematical physics. It has various applications in astrophysics, the theory of nuclear reactors, geophysics, the theory of chemical processes, semiconductor theory, fluid mechanics, etc. [25,29,31,39,40, 47, 52, 78, 83, 94, 98, 120, 124, 125, 135, 146].

Analytical Solution Methods for Boundary Value Problems

Download Analytical Solution Methods for Boundary Value Problems PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128043636
Total Pages : 202 pages
Book Rating : 4.1/5 (28 download)

DOWNLOAD NOW!


Book Synopsis Analytical Solution Methods for Boundary Value Problems by : A.S. Yakimov

Download or read book Analytical Solution Methods for Boundary Value Problems written by A.S. Yakimov and published by Academic Press. This book was released on 2016-08-13 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analytical Solution Methods for Boundary Value Problems is an extensively revised, new English language edition of the original 2011 Russian language work, which provides deep analysis methods and exact solutions for mathematical physicists seeking to model germane linear and nonlinear boundary problems. Current analytical solutions of equations within mathematical physics fail completely to meet boundary conditions of the second and third kind, and are wholly obtained by the defunct theory of series. These solutions are also obtained for linear partial differential equations of the second order. They do not apply to solutions of partial differential equations of the first order and they are incapable of solving nonlinear boundary value problems. Analytical Solution Methods for Boundary Value Problems attempts to resolve this issue, using quasi-linearization methods, operational calculus and spatial variable splitting to identify the exact and approximate analytical solutions of three-dimensional non-linear partial differential equations of the first and second order. The work does so uniquely using all analytical formulas for solving equations of mathematical physics without using the theory of series. Within this work, pertinent solutions of linear and nonlinear boundary problems are stated. On the basis of quasi-linearization, operational calculation and splitting on spatial variables, the exact and approached analytical solutions of the equations are obtained in private derivatives of the first and second order. Conditions of unequivocal resolvability of a nonlinear boundary problem are found and the estimation of speed of convergence of iterative process is given. On an example of trial functions results of comparison of the analytical solution are given which have been obtained on suggested mathematical technology, with the exact solution of boundary problems and with the numerical solutions on well-known methods. - Discusses the theory and analytical methods for many differential equations appropriate for applied and computational mechanics researchers - Addresses pertinent boundary problems in mathematical physics achieved without using the theory of series - Includes results that can be used to address nonlinear equations in heat conductivity for the solution of conjugate heat transfer problems and the equations of telegraph and nonlinear transport equation - Covers select method solutions for applied mathematicians interested in transport equations methods and thermal protection studies - Features extensive revisions from the Russian original, with 115+ new pages of new textual content

Boundary Value Problems for Analytic Functions

Download Boundary Value Problems for Analytic Functions PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9789810210205
Total Pages : 484 pages
Book Rating : 4.2/5 (12 download)

DOWNLOAD NOW!


Book Synopsis Boundary Value Problems for Analytic Functions by : Jian-Ke Lu

Download or read book Boundary Value Problems for Analytic Functions written by Jian-Ke Lu and published by World Scientific. This book was released on 1993 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with boundary value problems for analytic functions with applications to singular integral equations. New and simpler proofs of certain classical results such as the Plemelj formula, the Privalov theorem and the Poincar‚-Bertrand formula are given. Nearly one third of this book contains the author's original works, most of which have not been published in English before and, hence, were previously unknown to most readers in the world.It consists of 7 chapters together with an appendix: Chapter I describes the basic knowledge on Cauchy-type integrals and Cauchy principal value integrals; Chapters II and III study, respectively, fundamental boundary value problems and their applications to singular integral equations for closed contours; Chapters IV and V discuss the same problems for curves with nodes (including open arcs); Chaper VI deals with similar problems for systems of functions; Chapter VII is concerned with some miscellaneous problems and the Appendix contains some basic results on Fredholm integral equations. In most sections, there are carefully selected sets of exercises, some of which supplement the text of the sections; answers/hints are also given for some of these exercises.For graduate students or seniors, all the 7 chapters can be used for a full year course, while the first 3 chapters may be used for a one-semester course.

Boundary Value Problems for Transport Equations

Download Boundary Value Problems for Transport Equations PDF Online Free

Author :
Publisher :
ISBN 13 : 9781461219958
Total Pages : 300 pages
Book Rating : 4.2/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Boundary Value Problems for Transport Equations by : Valeri Agoshkov

Download or read book Boundary Value Problems for Transport Equations written by Valeri Agoshkov and published by . This book was released on 1998-09-29 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Differential Equations and Boundary Value Problems

Download Differential Equations and Boundary Value Problems PDF Online Free

Author :
Publisher : Pearson
ISBN 13 : 9780321796981
Total Pages : 0 pages
Book Rating : 4.7/5 (969 download)

DOWNLOAD NOW!


Book Synopsis Differential Equations and Boundary Value Problems by : Charles Henry Edwards

Download or read book Differential Equations and Boundary Value Problems written by Charles Henry Edwards and published by Pearson. This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written from the perspective of the applied mathematician, the latest edition of this bestselling book focuses on the theory and practical applications of Differential Equations to engineering and the sciences. Emphasis is placed on the methods of solution, analysis, and approximation. Use of technology, illustrations, and problem sets help readers develop an intuitive understanding of the material. Historical footnotes trace the development of the discipline and identify outstanding individual contributions. This book builds the foundation for anyone who needs to learn differential equations and then progress to more advanced studies.

Numerical Methods for Chemical Engineering

Download Numerical Methods for Chemical Engineering PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521859714
Total Pages : 496 pages
Book Rating : 4.8/5 (597 download)

DOWNLOAD NOW!


Book Synopsis Numerical Methods for Chemical Engineering by : Kenneth J. Beers

Download or read book Numerical Methods for Chemical Engineering written by Kenneth J. Beers and published by Cambridge University Press. This book was released on 2007 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applications of numerical mathematics and scientific computing to chemical engineering.

Boundary Value Problems of Mathematical Physics. VI

Download Boundary Value Problems of Mathematical Physics. VI PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821830109
Total Pages : 218 pages
Book Rating : 4.8/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Boundary Value Problems of Mathematical Physics. VI by : Olʹga A. Ladyženskaja

Download or read book Boundary Value Problems of Mathematical Physics. VI written by Olʹga A. Ladyženskaja and published by American Mathematical Soc.. This book was released on 1972 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Finite Difference Methods for Ordinary and Partial Differential Equations

Download Finite Difference Methods for Ordinary and Partial Differential Equations PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 9780898717839
Total Pages : 356 pages
Book Rating : 4.7/5 (178 download)

DOWNLOAD NOW!


Book Synopsis Finite Difference Methods for Ordinary and Partial Differential Equations by : Randall J. LeVeque

Download or read book Finite Difference Methods for Ordinary and Partial Differential Equations written by Randall J. LeVeque and published by SIAM. This book was released on 2007-01-01 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.

Boundary Control of PDEs

Download Boundary Control of PDEs PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 0898718600
Total Pages : 197 pages
Book Rating : 4.8/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Boundary Control of PDEs by : Miroslav Krstic

Download or read book Boundary Control of PDEs written by Miroslav Krstic and published by SIAM. This book was released on 2008-01-01 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: The text's broad coverage includes parabolic PDEs; hyperbolic PDEs of first and second order; fluid, thermal, and structural systems; delay systems; PDEs with third and fourth derivatives in space (including variants of linearized Ginzburg-Landau, Schrodinger, Kuramoto-Sivashinsky, KdV, beam, and Navier-Stokes equations); real-valued as well as complex-valued PDEs; stabilization as well as motion planning and trajectory tracking for PDEs; and elements of adaptive control for PDEs and control of nonlinear PDEs.

Least-Squares Finite Element Methods

Download Least-Squares Finite Element Methods PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387689222
Total Pages : 669 pages
Book Rating : 4.3/5 (876 download)

DOWNLOAD NOW!


Book Synopsis Least-Squares Finite Element Methods by : Pavel B. Bochev

Download or read book Least-Squares Finite Element Methods written by Pavel B. Bochev and published by Springer Science & Business Media. This book was released on 2009-04-28 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since their emergence, finite element methods have taken a place as one of the most versatile and powerful methodologies for the approximate numerical solution of Partial Differential Equations. These methods are used in incompressible fluid flow, heat, transfer, and other problems. This book provides researchers and practitioners with a concise guide to the theory and practice of least-square finite element methods, their strengths and weaknesses, established successes, and open problems.

Introduction to Inverse Problems for Differential Equations

Download Introduction to Inverse Problems for Differential Equations PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 331962797X
Total Pages : 264 pages
Book Rating : 4.3/5 (196 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Inverse Problems for Differential Equations by : Alemdar Hasanov Hasanoğlu

Download or read book Introduction to Inverse Problems for Differential Equations written by Alemdar Hasanov Hasanoğlu and published by Springer. This book was released on 2017-07-31 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a systematic exposition of the main ideas and methods in treating inverse problems for PDEs arising in basic mathematical models, though it makes no claim to being exhaustive. Mathematical models of most physical phenomena are governed by initial and boundary value problems for PDEs, and inverse problems governed by these equations arise naturally in nearly all branches of science and engineering. The book’s content, especially in the Introduction and Part I, is self-contained and is intended to also be accessible for beginning graduate students, whose mathematical background includes only basic courses in advanced calculus, PDEs and functional analysis. Further, the book can be used as the backbone for a lecture course on inverse and ill-posed problems for partial differential equations. In turn, the second part of the book consists of six nearly-independent chapters. The choice of these chapters was motivated by the fact that the inverse coefficient and source problems considered here are based on the basic and commonly used mathematical models governed by PDEs. These chapters describe not only these inverse problems, but also main inversion methods and techniques. Since the most distinctive features of any inverse problems related to PDEs are hidden in the properties of the corresponding solutions to direct problems, special attention is paid to the investigation of these properties.

Inverse Scattering Problems and Their Application to Nonlinear Integrable Equations

Download Inverse Scattering Problems and Their Application to Nonlinear Integrable Equations PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 100070906X
Total Pages : 365 pages
Book Rating : 4.0/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Inverse Scattering Problems and Their Application to Nonlinear Integrable Equations by : Pham Loi Vu

Download or read book Inverse Scattering Problems and Their Application to Nonlinear Integrable Equations written by Pham Loi Vu and published by CRC Press. This book was released on 2019-11-11 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inverse Scattering Problems and Their Application to Nonlinear Integrable Equations is devoted to inverse scattering problems (ISPs) for differential equations and their application to nonlinear evolution equations (NLEEs). The book is suitable for anyone who has a mathematical background and interest in functional analysis, partial differential equations, equations of mathematical physics, and functions of a complex variable. This book is intended for a wide community working with inverse scattering problems and their applications; in particular, there is a traditional community in mathematical physics. In this monograph, the problems are solved step-by-step, and detailed proofs are given for the problems to make the topics more accessible for students who are approaching them for the first time. Features • The unique solvability of ISPs are proved. The scattering data of the considered inverse scattering problems (ISPs) are described completely. • Solving the associated initial value problem or initial-boundary value problem for the nonlinear evolution equations (NLEEs) is carried out step-by-step. Namely, the NLEE can be written as the compatibility condition of two linear equations. The unknown boundary values are calculated with the help of the Lax (generalized) equation, and then the time-dependent scattering data (SD) are constructed from the initial and boundary conditions. • The potentials are recovered uniquely in terms of time-dependent SD, and the solution of the NLEEs is expressed uniquely in terms of the found solutions of the ISP. • Since the considered ISPs are solved well, then the SPs generated by two linear equations constitute the inverse scattering method (ISM). The application of the ISM to solving the NLEEs is consistent and is effectively embedded in the schema of the ISM.

Nuclear Science Abstracts

Download Nuclear Science Abstracts PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 1378 pages
Book Rating : 4.E/5 ( download)

DOWNLOAD NOW!


Book Synopsis Nuclear Science Abstracts by :

Download or read book Nuclear Science Abstracts written by and published by . This book was released on 1971 with total page 1378 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Scientific and Technical Aerospace Reports

Download Scientific and Technical Aerospace Reports PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 1370 pages
Book Rating : 4.:/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Scientific and Technical Aerospace Reports by :

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1981 with total page 1370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.

Nonlinear Analysis, Geometry and Applications

Download Nonlinear Analysis, Geometry and Applications PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 9783030573355
Total Pages : 462 pages
Book Rating : 4.5/5 (733 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Analysis, Geometry and Applications by : Diaraf Seck

Download or read book Nonlinear Analysis, Geometry and Applications written by Diaraf Seck and published by Birkhäuser. This book was released on 2020-11-21 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers nineteen papers presented at the first NLAGA-BIRS Symposium, which was held at the Cheikh Anta Diop University in Dakar, Senegal, on June 24–28, 2019. The four-day symposium brought together African experts on nonlinear analysis and geometry and their applications, as well as their international partners, to present and discuss mathematical results in various areas. The main goal of the NLAGA project is to advance and consolidate the development of these mathematical fields in West and Central Africa with a focus on solving real-world problems such as coastal erosion, pollution, and urban network and population dynamics problems. The book addresses a range of topics related to partial differential equations, geometrical analysis of optimal shapes, geometric structures, optimization and optimal transportation, control theory, and mathematical modeling.

Solving Differential Equations in R

Download Solving Differential Equations in R PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642280706
Total Pages : 258 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Solving Differential Equations in R by : Karline Soetaert

Download or read book Solving Differential Equations in R written by Karline Soetaert and published by Springer Science & Business Media. This book was released on 2012-06-06 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics plays an important role in many scientific and engineering disciplines. This book deals with the numerical solution of differential equations, a very important branch of mathematics. Our aim is to give a practical and theoretical account of how to solve a large variety of differential equations, comprising ordinary differential equations, initial value problems and boundary value problems, differential algebraic equations, partial differential equations and delay differential equations. The solution of differential equations using R is the main focus of this book. It is therefore intended for the practitioner, the student and the scientist, who wants to know how to use R for solving differential equations. However, it has been our goal that non-mathematicians should at least understand the basics of the methods, while obtaining entrance into the relevant literature that provides more mathematical background. Therefore, each chapter that deals with R examples is preceded by a chapter where the theory behind the numerical methods being used is introduced. In the sections that deal with the use of R for solving differential equations, we have taken examples from a variety of disciplines, including biology, chemistry, physics, pharmacokinetics. Many examples are well-known test examples, used frequently in the field of numerical analysis.