Free Boundary Problems

Download Free Boundary Problems PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319970798
Total Pages : 156 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Free Boundary Problems by : Darya Apushkinskaya

Download or read book Free Boundary Problems written by Darya Apushkinskaya and published by Springer. This book was released on 2018-09-20 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is concerned with several elliptic and parabolic obstacle-type problems with a focus on the cases where the free and fixed boundaries meet. The results presented complement those found in existing books in the subject, which mainly treat regularity properties away from the fixed boundary. The topics include optimal regularity, analysis of global solutions, tangential touch of the free and fixed boundaries, as well as Lipschitz- and $C^1$-regularity of the free boundary. Special attention is given to local versions of various monotonicity formulas. The intended audience includes research mathematicians and advanced graduate students interested in problems with free boundaries.

Free Boundary Problems

Download Free Boundary Problems PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3034878931
Total Pages : 342 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Free Boundary Problems by : Pierluigi Colli

Download or read book Free Boundary Problems written by Pierluigi Colli and published by Birkhäuser. This book was released on 2012-12-06 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many phenomena of interest for applications are represented by differential equations which are defined in a domain whose boundary is a priori unknown, and is accordingly named a "free boundary". A further quantitative condition is then provided in order to exclude indeterminacy. Free boundary problems thus encompass a broad spectrum which is represented in this state-of-the-art volume by a variety of contributions of researchers in mathematics and applied fields like physics, biology and material sciences. Special emphasis has been reserved for mathematical modelling and for the formulation of new problems.

Regularity of Free Boundaries in Obstacle-Type Problems

Download Regularity of Free Boundaries in Obstacle-Type Problems PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821887947
Total Pages : 233 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Regularity of Free Boundaries in Obstacle-Type Problems by : Arshak Petrosyan

Download or read book Regularity of Free Boundaries in Obstacle-Type Problems written by Arshak Petrosyan and published by American Mathematical Soc.. This book was released on 2012 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: The regularity theory of free boundaries flourished during the late 1970s and early 1980s and had a major impact in several areas of mathematics, mathematical physics, and industrial mathematics, as well as in applications. Since then the theory continued to evolve. Numerous new ideas, techniques, and methods have been developed, and challenging new problems in applications have arisen. The main intention of the authors of this book is to give a coherent introduction to the study of the regularity properties of free boundaries for a particular type of problems, known as obstacle-type problems. The emphasis is on the methods developed in the past two decades. The topics include optimal regularity, nondegeneracy, rescalings and blowups, classification of global solutions, several types of monotonicity formulas, Lipschitz, $C^1$, as well as higher regularity of the free boundary, structure of the singular set, touch of the free and fixed boundaries, and more. The book is based on lecture notes for the courses and mini-courses given by the authors at various locations and should be accessible to advanced graduate students and researchers in analysis and partial differential equations.

A Geometric Approach to Free Boundary Problems

Download A Geometric Approach to Free Boundary Problems PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821837842
Total Pages : 282 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis A Geometric Approach to Free Boundary Problems by : Luis A. Caffarelli

Download or read book A Geometric Approach to Free Boundary Problems written by Luis A. Caffarelli and published by American Mathematical Soc.. This book was released on 2005 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: We hope that the tools and ideas presented here will serve as a basis for the study of more complex phenomena and problems."--Jacket.

Free Boundary Problems

Download Free Boundary Problems PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9781584880189
Total Pages : 372 pages
Book Rating : 4.8/5 (81 download)

DOWNLOAD NOW!


Book Synopsis Free Boundary Problems by : Ioannis Athanasopoulos

Download or read book Free Boundary Problems written by Ioannis Athanasopoulos and published by CRC Press. This book was released on 1999-06-25 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Free boundary problems arise in an enormous number of situations in nature and technology. They hold a strategic position in pure and applied sciences and thus have been the focus of considerable research over the last three decades. Free Boundary Problems: Theory and Applications presents the work and results of experts at the forefront of current research in mathematics, material sciences, chemical engineering, biology, and physics. It contains the plenary lectures and contributed papers of the 1997 International Interdisciplinary Congress proceedings held in Crete. The main topics addressed include free boundary problems in fluid and solid mechanics, combustion, the theory of filtration, and glaciology. Contributors also discuss material science modeling, recent mathematical developments, and numerical analysis advances within their presentations of more specific topics, such as singularities of interfaces, cusp cavitation and fracture, capillary fluid dynamics of film coating, dynamics of surface growth, phase transition kinetics, and phase field models. With the implications of free boundary problems so far reaching, it becomes important for researchers from all of these fields to stay abreast of new developments. Free Boundary Problems: Theory and Applications provides the opportunity to do just that, presenting recent advances from more than 50 researchers at the frontiers of science, mathematics, and technology.

Geometric Measure Theory and Free Boundary Problems

Download Geometric Measure Theory and Free Boundary Problems PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 303065799X
Total Pages : 138 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Geometric Measure Theory and Free Boundary Problems by : Guido De Philippis

Download or read book Geometric Measure Theory and Free Boundary Problems written by Guido De Philippis and published by Springer Nature. This book was released on 2021-03-23 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume covers contemporary aspects of geometric measure theory with a focus on applications to partial differential equations, free boundary problems and water waves. It is based on lectures given at the 2019 CIME summer school “Geometric Measure Theory and Applications – From Geometric Analysis to Free Boundary Problems” which took place in Cetraro, Italy, under the scientific direction of Matteo Focardi and Emanuele Spadaro. Providing a description of the structure of measures satisfying certain differential constraints, and covering regularity theory for Bernoulli type free boundary problems and water waves as well as regularity theory for the obstacle problems and the developments leading to applications to the Stefan problem, this volume will be of interest to students and researchers in mathematical analysis and its applications.

The obstacle problem

Download The obstacle problem PDF Online Free

Author :
Publisher : Edizioni della Normale
ISBN 13 : 9788876422492
Total Pages : 0 pages
Book Rating : 4.4/5 (224 download)

DOWNLOAD NOW!


Book Synopsis The obstacle problem by : Luis Angel Caffarelli

Download or read book The obstacle problem written by Luis Angel Caffarelli and published by Edizioni della Normale. This book was released on 1999-10-01 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The material presented here corresponds to Fermi lectures that I was invited to deliver at the Scuola Normale di Pisa in the spring of 1998. The obstacle problem consists in studying the properties of minimizers of the Dirichlet integral in a domain D of Rn, among all those configurations u with prescribed boundary values and costrained to remain in D above a prescribed obstacle F. In the Hilbert space H1(D) of all those functions with square integrable gradient, we consider the closed convex set K of functions u with fixed boundary value and which are greater than F in D. There is a unique point in K minimizing the Dirichlet integral. That is called the solution to the obstacle problem.

Free Boundary Problems in PDEs and Particle Systems

Download Free Boundary Problems in PDEs and Particle Systems PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9783319333694
Total Pages : 0 pages
Book Rating : 4.3/5 (336 download)

DOWNLOAD NOW!


Book Synopsis Free Boundary Problems in PDEs and Particle Systems by : Gioia Carinci

Download or read book Free Boundary Problems in PDEs and Particle Systems written by Gioia Carinci and published by Springer. This book was released on 2016-06-29 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this volume a theory for models of transport in the presence of a free boundary is developed.Macroscopic laws of transport are described by PDE's. When the system is open, there are several mechanisms to couple the system with the external forces. Here a class of systems where the interaction with the exterior takes place in correspondence of a free boundary is considered. Both continuous and discrete models sharing the same structure are analysed. In Part I a free boundary problem related to the Stefan Problem is worked out in all details. For this model a new notion of relaxed solution is proposed for which global existence and uniqueness is proven. It is also shown that this is the hydrodynamic limit of the empirical mass density of the associated particle system. In Part II several other models are discussed. The expectation is that the results proved for the basic model extend to these other cases.All the models discussed in this volume have an interest in problems arising in several research fields such as heat conduction, queuing theory, propagation of fire, interface dynamics, population dynamics, evolution of biological systems with selection mechanisms.In general researchers interested in the relations between PDE’s and stochastic processes can find in this volume an extension of this correspondence to modern mathematical physics.

Mathematical Analysis of the Navier-Stokes Equations

Download Mathematical Analysis of the Navier-Stokes Equations PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030362264
Total Pages : 471 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Analysis of the Navier-Stokes Equations by : Matthias Hieber

Download or read book Mathematical Analysis of the Navier-Stokes Equations written by Matthias Hieber and published by Springer Nature. This book was released on 2020-04-28 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects together a unique set of articles dedicated to several fundamental aspects of the Navier–Stokes equations. As is well known, understanding the mathematical properties of these equations, along with their physical interpretation, constitutes one of the most challenging questions of applied mathematics. Indeed, the Navier-Stokes equations feature among the Clay Mathematics Institute's seven Millennium Prize Problems (existence of global in time, regular solutions corresponding to initial data of unrestricted magnitude). The text comprises three extensive contributions covering the following topics: (1) Operator-Valued H∞-calculus, R-boundedness, Fourier multipliers and maximal Lp-regularity theory for a large, abstract class of quasi-linear evolution problems with applications to Navier–Stokes equations and other fluid model equations; (2) Classical existence, uniqueness and regularity theorems of solutions to the Navier–Stokes initial-value problem, along with space-time partial regularity and investigation of the smoothness of the Lagrangean flow map; and (3) A complete mathematical theory of R-boundedness and maximal regularity with applications to free boundary problems for the Navier–Stokes equations with and without surface tension. Offering a general mathematical framework that could be used to study fluid problems and, more generally, a wide class of abstract evolution equations, this volume is aimed at graduate students and researchers who want to become acquainted with fundamental problems related to the Navier–Stokes equations.

Regularity of Minimal Surfaces

Download Regularity of Minimal Surfaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642117007
Total Pages : 634 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Regularity of Minimal Surfaces by : Ulrich Dierkes

Download or read book Regularity of Minimal Surfaces written by Ulrich Dierkes and published by Springer Science & Business Media. This book was released on 2010-08-16 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: Regularity of Minimal Surfaces begins with a survey of minimal surfaces with free boundaries. Following this, the basic results concerning the boundary behaviour of minimal surfaces and H-surfaces with fixed or free boundaries are studied. In particular, the asymptotic expansions at interior and boundary branch points are derived, leading to general Gauss-Bonnet formulas. Furthermore, gradient estimates and asymptotic expansions for minimal surfaces with only piecewise smooth boundaries are obtained. One of the main features of free boundary value problems for minimal surfaces is that, for principal reasons, it is impossible to derive a priori estimates. Therefore regularity proofs for non-minimizers have to be based on indirect reasoning using monotonicity formulas. This is followed by a long chapter discussing geometric properties of minimal and H-surfaces such as enclosure theorems and isoperimetric inequalities, leading to the discussion of obstacle problems and of Plateau ́s problem for H-surfaces in a Riemannian manifold. A natural generalization of the isoperimetric problem is the so-called thread problem, dealing with minimal surfaces whose boundary consists of a fixed arc of given length. Existence and regularity of solutions are discussed. The final chapter on branch points presents a new approach to the theorem that area minimizing solutions of Plateau ́s problem have no interior branch points.

Bernoulli Free-Boundary Problems

Download Bernoulli Free-Boundary Problems PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821841890
Total Pages : 86 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Bernoulli Free-Boundary Problems by : Eugene Shargorodsky

Download or read book Bernoulli Free-Boundary Problems written by Eugene Shargorodsky and published by American Mathematical Soc.. This book was released on 2008 with total page 86 pages. Available in PDF, EPUB and Kindle. Book excerpt: Questions of existence, multiplicity, and regularity of free boundaries for prescribed data need to be addressed and their solutions lead to nonlinear problems. In this paper an equivalence is established between Bernoulli free-boundary problems and a class of equations for real-valued functions of one real variable.

Nonlocal Diffusion and Applications

Download Nonlocal Diffusion and Applications PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319287397
Total Pages : 165 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Nonlocal Diffusion and Applications by : Claudia Bucur

Download or read book Nonlocal Diffusion and Applications written by Claudia Bucur and published by Springer. This book was released on 2016-04-08 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: Working in the fractional Laplace framework, this book provides models and theorems related to nonlocal diffusion phenomena. In addition to a simple probabilistic interpretation, some applications to water waves, crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and Schrödinger equations are given. Furthermore, an example of an s-harmonic function, its harmonic extension and some insight into a fractional version of a classical conjecture due to De Giorgi are presented. Although the aim is primarily to gather some introductory material concerning applications of the fractional Laplacian, some of the proofs and results are new. The work is entirely self-contained, and readers who wish to pursue related subjects of interest are invited to consult the rich bibliography for guidance.

Geometry of PDEs and Related Problems

Download Geometry of PDEs and Related Problems PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319951866
Total Pages : 207 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Geometry of PDEs and Related Problems by : Xavier Cabré

Download or read book Geometry of PDEs and Related Problems written by Xavier Cabré and published by Springer. This book was released on 2018-10-03 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to present different aspects of the deep interplay between Partial Differential Equations and Geometry. It gives an overview of some of the themes of recent research in the field and their mutual links, describing the main underlying ideas, and providing up-to-date references. Collecting together the lecture notes of the five mini-courses given at the CIME Summer School held in Cetraro (Cosenza, Italy) in the week of June 19–23, 2017, the volume presents a friendly introduction to a broad spectrum of up-to-date and hot topics in the study of PDEs, describing the state-of-the-art in the subject. It also gives further details on the main ideas of the proofs, their technical difficulties, and their possible extension to other contexts. Aiming to be a primary source for researchers in the field, the book will attract potential readers from several areas of mathematics.

Minimal Surfaces I

Download Minimal Surfaces I PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662027917
Total Pages : 528 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Minimal Surfaces I by : Ulrich Dierkes

Download or read book Minimal Surfaces I written by Ulrich Dierkes and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: Minimal surfaces I is an introduction to the field of minimal surfaces and apresentation of the classical theory as well as of parts of the modern development centered around boundary value problems. Part II deals with the boundary behaviour of minimal surfaces. Part I is particularly apt for students who want to enter this interesting area of analysis and differential geometry which during the last 25 years of mathematical research has been very active and productive. Surveys of various subareas will lead the student to the current frontiers of knowledge and can alsobe useful to the researcher. The lecturer can easily base courses of one or two semesters on differential geometry on Vol. 1, as many topics are worked out in great detail. Numerous computer-generated illustrations of old and new minimal surfaces are included to support intuition and imagination. Part 2 leads the reader up to the regularity theory fornonlinear elliptic boundary value problems illustrated by a particular and fascinating topic. There is no comparably comprehensive treatment of the problem of boundary regularity of minimal surfaces available in book form. This long-awaited book is a timely and welcome addition to the mathematical literature.

Variational Principles and Free-boundary Problems

Download Variational Principles and Free-boundary Problems PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 728 pages
Book Rating : 4.3/5 (97 download)

DOWNLOAD NOW!


Book Synopsis Variational Principles and Free-boundary Problems by : Avner Friedman

Download or read book Variational Principles and Free-boundary Problems written by Avner Friedman and published by . This book was released on 1988 with total page 728 pages. Available in PDF, EPUB and Kindle. Book excerpt: This advanced graduate-level text examines variational methods in partial differential equations and illustrates their applications to a number of free-boundary problems. Detailed statements of the standard theory of elliptic and parabolic operators make this treatment readable for engineers, students, and nonspecialists alike. The text's first two chapters can be used for a single-semester graduate course in variational inequalities or partial differential equations. The succeeding chapters -- covering jets and cavities, variational problems with potentials, and free-boundary problems not in variational form -- are more specialized and self-contained. Readers who have mastered chapters 1 and 2 will be able to conduct research on the problems explored in subsequent chapters. Bibliographic remarks conclude each chapter, along with several problems and exercises.

Mathematical Modeling

Download Mathematical Modeling PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319551612
Total Pages : 519 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Modeling by : Christof Eck

Download or read book Mathematical Modeling written by Christof Eck and published by Springer. This book was released on 2017-04-11 with total page 519 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical models are the decisive tool to explain and predict phenomena in the natural and engineering sciences. With this book readers will learn to derive mathematical models which help to understand real world phenomena. At the same time a wealth of important examples for the abstract concepts treated in the curriculum of mathematics degrees are given. An essential feature of this book is that mathematical structures are used as an ordering principle and not the fields of application. Methods from linear algebra, analysis and the theory of ordinary and partial differential equations are thoroughly introduced and applied in the modeling process. Examples of applications in the fields electrical networks, chemical reaction dynamics, population dynamics, fluid dynamics, elasticity theory and crystal growth are treated comprehensively.

Lectures on Elliptic Boundary Value Problems

Download Lectures on Elliptic Boundary Value Problems PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821849107
Total Pages : 225 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Elliptic Boundary Value Problems by : Shmuel Agmon

Download or read book Lectures on Elliptic Boundary Value Problems written by Shmuel Agmon and published by American Mathematical Soc.. This book was released on 2010-02-03 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, which is a new edition of a book originally published in 1965, presents an introduction to the theory of higher-order elliptic boundary value problems. The book contains a detailed study of basic problems of the theory, such as the problem of existence and regularity of solutions of higher-order elliptic boundary value problems. It also contains a study of spectral properties of operators associated with elliptic boundary value problems. Weyl's law on the asymptotic distribution of eigenvalues is studied in great generality.