Computational Statistics and Applications

Download Computational Statistics and Applications PDF Online Free

Author :
Publisher : BoD – Books on Demand
ISBN 13 : 1839697822
Total Pages : 207 pages
Book Rating : 4.8/5 (396 download)

DOWNLOAD NOW!


Book Synopsis Computational Statistics and Applications by : Ricardo López-Ruiz

Download or read book Computational Statistics and Applications written by Ricardo López-Ruiz and published by BoD – Books on Demand. This book was released on 2022-04-06 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nature evolves mainly in a statistical way. Different strategies, formulas, and conformations are continuously confronted in the natural processes. Some of them are selected and then the evolution continues with a new loop of confrontation for the next generation of phenomena and living beings. Failings are corrected without a previous program or design. The new options generated by different statistical and random scenarios lead to solutions for surviving the present conditions. This is the general panorama for all scrutiny levels of the life cycles. Over three sections, this book examines different statistical questions and techniques in the context of machine learning and clustering methods, the frailty models used in survival analysis, and other studies of statistics applied to diverse problems.

Advanced Data Mining and Applications

Download Advanced Data Mining and Applications PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642355277
Total Pages : 812 pages
Book Rating : 4.6/5 (423 download)

DOWNLOAD NOW!


Book Synopsis Advanced Data Mining and Applications by : Shuigeng Zhou

Download or read book Advanced Data Mining and Applications written by Shuigeng Zhou and published by Springer Science & Business Media. This book was released on 2012-12-09 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 8th International Conference on Advanced Data Mining and Applications, ADMA 2012, held in Nanjing, China, in December 2012. The 32 regular papers and 32 short papers presented in this volume were carefully reviewed and selected from 168 submissions. They are organized in topical sections named: social media mining; clustering; machine learning: algorithms and applications; classification; prediction, regression and recognition; optimization and approximation; mining time series and streaming data; Web mining and semantic analysis; data mining applications; search and retrieval; information recommendation and hiding; outlier detection; topic modeling; and data cube computing.

Handbook of Bayesian Variable Selection

Download Handbook of Bayesian Variable Selection PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000510204
Total Pages : 491 pages
Book Rating : 4.0/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Bayesian Variable Selection by : Mahlet G. Tadesse

Download or read book Handbook of Bayesian Variable Selection written by Mahlet G. Tadesse and published by CRC Press. This book was released on 2021-12-24 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian variable selection has experienced substantial developments over the past 30 years with the proliferation of large data sets. Identifying relevant variables to include in a model allows simpler interpretation, avoids overfitting and multicollinearity, and can provide insights into the mechanisms underlying an observed phenomenon. Variable selection is especially important when the number of potential predictors is substantially larger than the sample size and sparsity can reasonably be assumed. The Handbook of Bayesian Variable Selection provides a comprehensive review of theoretical, methodological and computational aspects of Bayesian methods for variable selection. The topics covered include spike-and-slab priors, continuous shrinkage priors, Bayes factors, Bayesian model averaging, partitioning methods, as well as variable selection in decision trees and edge selection in graphical models. The handbook targets graduate students and established researchers who seek to understand the latest developments in the field. It also provides a valuable reference for all interested in applying existing methods and/or pursuing methodological extensions. Features: Provides a comprehensive review of methods and applications of Bayesian variable selection. Divided into four parts: Spike-and-Slab Priors; Continuous Shrinkage Priors; Extensions to various Modeling; Other Approaches to Bayesian Variable Selection. Covers theoretical and methodological aspects, as well as worked out examples with R code provided in the online supplement. Includes contributions by experts in the field. Supported by a website with code, data, and other supplementary material

Machine Learning Under a Modern Optimization Lens

Download Machine Learning Under a Modern Optimization Lens PDF Online Free

Author :
Publisher :
ISBN 13 : 9781733788502
Total Pages : 589 pages
Book Rating : 4.7/5 (885 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Under a Modern Optimization Lens by : Dimitris Bertsimas

Download or read book Machine Learning Under a Modern Optimization Lens written by Dimitris Bertsimas and published by . This book was released on 2019 with total page 589 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Statistics for High-Dimensional Data

Download Statistics for High-Dimensional Data PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 364220192X
Total Pages : 568 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Statistics for High-Dimensional Data by : Peter Bühlmann

Download or read book Statistics for High-Dimensional Data written by Peter Bühlmann and published by Springer Science & Business Media. This book was released on 2011-06-08 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern statistics deals with large and complex data sets, and consequently with models containing a large number of parameters. This book presents a detailed account of recently developed approaches, including the Lasso and versions of it for various models, boosting methods, undirected graphical modeling, and procedures controlling false positive selections. A special characteristic of the book is that it contains comprehensive mathematical theory on high-dimensional statistics combined with methodology, algorithms and illustrations with real data examples. This in-depth approach highlights the methods’ great potential and practical applicability in a variety of settings. As such, it is a valuable resource for researchers, graduate students and experts in statistics, applied mathematics and computer science.

Cross-validation and Regression Analysis in High-dimensional Sparse Linear Models

Download Cross-validation and Regression Analysis in High-dimensional Sparse Linear Models PDF Online Free

Author :
Publisher : Stanford University
ISBN 13 :
Total Pages : 91 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Cross-validation and Regression Analysis in High-dimensional Sparse Linear Models by : Feng Zhang

Download or read book Cross-validation and Regression Analysis in High-dimensional Sparse Linear Models written by Feng Zhang and published by Stanford University. This book was released on 2011 with total page 91 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern scientific research often involves experiments with at most hundreds of subjects but with tens of thousands of variables for every subject. The challenge of high dimensionality has reshaped statistical thinking and modeling. Variable selection plays a pivotal role in the high-dimensional data analysis, and the combination of sparsity and accuracy is crucial for statistical theory and practical applications. Regularization methods are attractive for tackling these sparsity and accuracy issues. The first part of this thesis studies two regularization methods. First, we consider the orthogonal greedy algorithm (OGA) used in conjunction with a high-dimensional information criterion introduced by Ing& Lai (2011). Although it has been shown to have excellent performance for weakly sparse regression models, one does not know a priori in practice that the actual model is weakly sparse, and we address this problem by developing a new cross-validation approach. OGA can be viewed as L0 regularization for weakly sparse regression models. When such sparsity fails, as revealed by the cross-validation analysis, we propose to use a new way to combine L1 and L2 penalties, which we show to have important advantages over previous regularization methods. The second part of the thesis develops a Monte Carlo Cross-Validation (MCCV) method to estimate the distribution of out-of-sample prediction errors when a training sample is used to build a regression model for prediction. Asymptotic theory and simulation studies show that the proposed MCCV method mimics the actual (but unknown) prediction error distribution even when the number of regressors exceeds the sample size. Therefore MCCV provides a useful tool for comparing the predictive performance of different regularization methods for real (rather than simulated) data sets.

Statistical Learning with Sparsity

Download Statistical Learning with Sparsity PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498712177
Total Pages : 354 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Statistical Learning with Sparsity by : Trevor Hastie

Download or read book Statistical Learning with Sparsity written by Trevor Hastie and published by CRC Press. This book was released on 2015-05-07 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover New Methods for Dealing with High-Dimensional DataA sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underl

Issues in Life Sciences: Molecular Biology: 2011 Edition

Download Issues in Life Sciences: Molecular Biology: 2011 Edition PDF Online Free

Author :
Publisher : ScholarlyEditions
ISBN 13 : 1464963487
Total Pages : 3332 pages
Book Rating : 4.4/5 (649 download)

DOWNLOAD NOW!


Book Synopsis Issues in Life Sciences: Molecular Biology: 2011 Edition by :

Download or read book Issues in Life Sciences: Molecular Biology: 2011 Edition written by and published by ScholarlyEditions. This book was released on 2012-01-09 with total page 3332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Issues in Life Sciences: Molecular Biology / 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Life Sciences—Molecular Biology. The editors have built Issues in Life Sciences: Molecular Biology: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Life Sciences—Molecular Biology in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Life Sciences: Molecular Biology: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

New Frontiers of Biostatistics and Bioinformatics

Download New Frontiers of Biostatistics and Bioinformatics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319993895
Total Pages : 473 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis New Frontiers of Biostatistics and Bioinformatics by : Yichuan Zhao

Download or read book New Frontiers of Biostatistics and Bioinformatics written by Yichuan Zhao and published by Springer. This book was released on 2018-12-05 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is comprised of presentations delivered at the 5th Workshop on Biostatistics and Bioinformatics held in Atlanta on May 5-7, 2017. Featuring twenty-two selected papers from the workshop, this book showcases the most current advances in the field, presenting new methods, theories, and case applications at the frontiers of biostatistics, bioinformatics, and interdisciplinary areas. Biostatistics and bioinformatics have been playing a key role in statistics and other scientific research fields in recent years. The goal of the 5th Workshop on Biostatistics and Bioinformatics was to stimulate research, foster interaction among researchers in field, and offer opportunities for learning and facilitating research collaborations in the era of big data. The resulting volume offers timely insights for researchers, students, and industry practitioners.

Computational Intelligence and Healthcare Informatics

Download Computational Intelligence and Healthcare Informatics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119818680
Total Pages : 434 pages
Book Rating : 4.1/5 (198 download)

DOWNLOAD NOW!


Book Synopsis Computational Intelligence and Healthcare Informatics by : Om Prakash Jena

Download or read book Computational Intelligence and Healthcare Informatics written by Om Prakash Jena and published by John Wiley & Sons. This book was released on 2021-10-19 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: COMPUTATIONAL INTELLIGENCE and HEALTHCARE INFORMATICS The book provides the state-of-the-art innovation, research, design, and implements methodological and algorithmic solutions to data processing problems, designing and analysing evolving trends in health informatics, intelligent disease prediction, and computer-aided diagnosis. Computational intelligence (CI) refers to the ability of computers to accomplish tasks that are normally completed by intelligent beings such as humans and animals. With the rapid advance of technology, artificial intelligence (AI) techniques are being effectively used in the fields of health to improve the efficiency of treatments, avoid the risk of false diagnoses, make therapeutic decisions, and predict the outcome in many clinical scenarios. Modern health treatments are faced with the challenge of acquiring, analyzing and applying the large amount of knowledge necessary to solve complex problems. Computational intelligence in healthcare mainly uses computer techniques to perform clinical diagnoses and suggest treatments. In the present scenario of computing, CI tools present adaptive mechanisms that permit the understanding of data in difficult and changing environments. The desired results of CI technologies profit medical fields by assembling patients with the same types of diseases or fitness problems so that healthcare facilities can provide effectual treatments. This book starts with the fundamentals of computer intelligence and the techniques and procedures associated with it. Contained in this book are state-of-the-art methods of computational intelligence and other allied techniques used in the healthcare system, as well as advances in different CI methods that will confront the problem of effective data analysis and storage faced by healthcare institutions. The objective of this book is to provide researchers with a platform encompassing state-of-the-art innovations; research and design; implementation of methodological and algorithmic solutions to data processing problems; and the design and analysis of evolving trends in health informatics, intelligent disease prediction and computer-aided diagnosis. Audience The book is of interest to artificial intelligence and biomedical scientists, researchers, engineers and students in various settings such as pharmaceutical & biotechnology companies, virtual assistants developing companies, medical imaging & diagnostics centers, wearable device designers, healthcare assistance robot manufacturers, precision medicine testers, hospital management, and researchers working in healthcare system.

Handbook of Graphs and Networks

Download Handbook of Graphs and Networks PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 3527606335
Total Pages : 417 pages
Book Rating : 4.5/5 (276 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Graphs and Networks by : Stefan Bornholdt

Download or read book Handbook of Graphs and Networks written by Stefan Bornholdt and published by John Wiley & Sons. This book was released on 2006-03-06 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex interacting networks are observed in systems from such diverse areas as physics, biology, economics, ecology, and computer science. For example, economic or social interactions often organize themselves in complex network structures. Similar phenomena are observed in traffic flow and in communication networks as the internet. In current problems of the Biosciences, prominent examples are protein networks in the living cell, as well as molecular networks in the genome. On larger scales one finds networks of cells as in neural networks, up to the scale of organisms in ecological food webs. This book defines the field of complex interacting networks in its infancy and presents the dynamics of networks and their structure as a key concept across disciplines. The contributions present common underlying principles of network dynamics and their theoretical description and are of interest to specialists as well as to the non-specialized reader looking for an introduction to this new exciting field. Theoretical concepts include modeling networks as dynamical systems with numerical methods and new graph theoretical methods, but also focus on networks that change their topology as in morphogenesis and self-organization. The authors offer concepts to model network structures and dynamics, focussing on approaches applicable across disciplines.

Machine Intelligence in Design Automation

Download Machine Intelligence in Design Automation PDF Online Free

Author :
Publisher :
ISBN 13 : 9781980554356
Total Pages : 219 pages
Book Rating : 4.5/5 (543 download)

DOWNLOAD NOW!


Book Synopsis Machine Intelligence in Design Automation by : Rohit Sharma

Download or read book Machine Intelligence in Design Automation written by Rohit Sharma and published by . This book was released on 2018-03-13 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a hands-on approach for solving electronic design automation problems with modern machine intelligence techniques by including step-by-step development of commercial grade design applications including resistance estimation, capacitance estimation, cell classification and others using dataset extracted from designs at 20nm. It walks the reader step by step in building solution flow for EDA problems with Python and Tensorflow.Intended audience includes design automation engineers, managers, executives, research professionals, graduate students, Machine learning enthusiasts, EDA and CAD developers, mentors, and the merely inquisitive. It is organized to serve as a compendium to a beginner, a ready reference to intermediate and source for an expert.

Extended Abstracts Fall 2015

Download Extended Abstracts Fall 2015 PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3319556398
Total Pages : 129 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Extended Abstracts Fall 2015 by : Elizabeth A. Ainsbury

Download or read book Extended Abstracts Fall 2015 written by Elizabeth A. Ainsbury and published by Birkhäuser. This book was released on 2017-05-05 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-part volume gathers extended conference abstracts corresponding to selected talks from the "Biostatnet workshop on Biomedical (Big) Data" and from the "DoReMi LD-RadStats: Workshop for statisticians interested in contributing to EU low dose radiation research", which were held at the Centre de Recerca Matemàtica (CRM) in Barcelona from November 26th to 27th, 2015, and at the Institut de Salut Global ISGlobal (former CREAL) from October 26th to 28th, 2015, respectively. Most of the contributions are brief articles, presenting preliminary new results not yet published in regular research journals. The first part is devoted to the challenges of analyzing so called "Biomedical Big Data", tremendous amounts of biomedical and health data that are generated every day due to the use of recent technological advances such as massive genomic sequencing, electronic health records or high-resolution medical imaging, among others. The analysis of this information poses significant challenges for researchers in the fields of biostatistics, bioinformatics, and signal processing. Furthermore, other relevant challenges in biostatistical research, not necessarily involving big data, are also discussed. In turn, the second part is dedicated to low dose radiation research, where there is a need to fully understand and characterize potential sources of uncertainty before they can be reduced. Further, the book demonstrates why formal uncertainty analysis has the potential to provide a common platform for multidisciplinary research in this field. This book is intended for established researchers, as well as for PhD and postdoctoral students who want to learn more about the latest advances in these highly active areas of research.

Data Mining for Bioinformatics

Download Data Mining for Bioinformatics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0849328012
Total Pages : 351 pages
Book Rating : 4.8/5 (493 download)

DOWNLOAD NOW!


Book Synopsis Data Mining for Bioinformatics by : Sumeet Dua

Download or read book Data Mining for Bioinformatics written by Sumeet Dua and published by CRC Press. This book was released on 2012-11-06 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering theory, algorithms, and methodologies, as well as data mining technologies, Data Mining for Bioinformatics provides a comprehensive discussion of data-intensive computations used in data mining with applications in bioinformatics. It supplies a broad, yet in-depth, overview of the application domains of data mining for bioinformatics to help readers from both biology and computer science backgrounds gain an enhanced understanding of this cross-disciplinary field. The book offers authoritative coverage of data mining techniques, technologies, and frameworks used for storing, analyzing, and extracting knowledge from large databases in the bioinformatics domains, including genomics and proteomics. It begins by describing the evolution of bioinformatics and highlighting the challenges that can be addressed using data mining techniques. Introducing the various data mining techniques that can be employed in biological databases, the text is organized into four sections: Supplies a complete overview of the evolution of the field and its intersection with computational learning Describes the role of data mining in analyzing large biological databases—explaining the breath of the various feature selection and feature extraction techniques that data mining has to offer Focuses on concepts of unsupervised learning using clustering techniques and its application to large biological data Covers supervised learning using classification techniques most commonly used in bioinformatics—addressing the need for validation and benchmarking of inferences derived using either clustering or classification The book describes the various biological databases prominently referred to in bioinformatics and includes a detailed list of the applications of advanced clustering algorithms used in bioinformatics. Highlighting the challenges encountered during the application of classification on biological databases, it considers systems of both single and ensemble classifiers and shares effort-saving tips for model selection and performance estimation strategies.

Artificial Intelligence and Bioinformatics Applications for Omics and Multi-Omics Studies

Download Artificial Intelligence and Bioinformatics Applications for Omics and Multi-Omics Studies PDF Online Free

Author :
Publisher : Frontiers Media SA
ISBN 13 : 2832544452
Total Pages : 160 pages
Book Rating : 4.8/5 (325 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence and Bioinformatics Applications for Omics and Multi-Omics Studies by : Angelo Facchiano

Download or read book Artificial Intelligence and Bioinformatics Applications for Omics and Multi-Omics Studies written by Angelo Facchiano and published by Frontiers Media SA. This book was released on 2024-02-07 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt:

From Data and Information Analysis to Knowledge Engineering

Download From Data and Information Analysis to Knowledge Engineering PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783540313137
Total Pages : 788 pages
Book Rating : 4.3/5 (131 download)

DOWNLOAD NOW!


Book Synopsis From Data and Information Analysis to Knowledge Engineering by : Myra Spiliopoulou

Download or read book From Data and Information Analysis to Knowledge Engineering written by Myra Spiliopoulou and published by Springer Science & Business Media. This book was released on 2006-02-09 with total page 788 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume collects revised versions of papers presented at the 29th Annual Conference of the Gesellschaft für Klassifikation, the German Classification Society, held at the Otto-von-Guericke-University of Magdeburg, Germany, in March 2005. In addition to traditional subjects like Classification, Clustering, and Data Analysis, converage extends to a wide range of topics relating to Computer Science: Text Mining, Web Mining, Fuzzy Data Analysis, IT Security, Adaptivity and Personalization, and Visualization.

Large Dimensional Factor Analysis

Download Large Dimensional Factor Analysis PDF Online Free

Author :
Publisher : Now Publishers Inc
ISBN 13 : 1601981449
Total Pages : 90 pages
Book Rating : 4.6/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Large Dimensional Factor Analysis by : Jushan Bai

Download or read book Large Dimensional Factor Analysis written by Jushan Bai and published by Now Publishers Inc. This book was released on 2008 with total page 90 pages. Available in PDF, EPUB and Kindle. Book excerpt: Large Dimensional Factor Analysis provides a survey of the main theoretical results for large dimensional factor models, emphasizing results that have implications for empirical work. The authors focus on the development of the static factor models and on the use of estimated factors in subsequent estimation and inference. Large Dimensional Factor Analysis discusses how to determine the number of factors, how to conduct inference when estimated factors are used in regressions, how to assess the adequacy pf observed variables as proxies for latent factors, how to exploit the estimated factors to test unit root tests and common trends, and how to estimate panel cointegration models.