Elements of Topological Dynamics

Download Elements of Topological Dynamics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401581711
Total Pages : 762 pages
Book Rating : 4.4/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Elements of Topological Dynamics by : J. de Vries

Download or read book Elements of Topological Dynamics written by J. de Vries and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 762 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed as an introduction into what I call 'abstract' Topological Dynamics (TO): the study of topological transformation groups with respect to problems that can be traced back to the qualitative theory of differential equa is in the tradition of the books [GH] and [EW. The title tions. So this book (,Elements . . . ' rather than 'Introduction . . . ') does not mean that this book should be compared, either in scope or in (intended) impact, with the 'Ele ments' of Euclid or Bourbaki. Instead, it reflects the choice and organisation of the material in this book: elementary and basic (but sufficient to understand recent research papers in this field). There are still many challenging prob lems waiting for a solution, and especially among general topologists there is a growing interest in this direction. However, the technical inaccessability of many research papers makes it almost impossible for an outsider to under stand what is going on. To a large extent, this inaccessability is caused by the lack of a good and systematic exposition of the fundamental methods and techniques of abstract TO. This book is an attempt to fill this gap. The guiding principle for the organization of the material in this book has been the exposition of methods and techniques rather than a discussion of the leading problems and their solutions. though the latter are certainly not neglected: they are used as a motivation wherever possible.

Topological Dynamics

Download Topological Dynamics PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821874691
Total Pages : 184 pages
Book Rating : 4.8/5 (746 download)

DOWNLOAD NOW!


Book Synopsis Topological Dynamics by : Walter Helbig Gottschalk

Download or read book Topological Dynamics written by Walter Helbig Gottschalk and published by American Mathematical Soc.. This book was released on 1955-01-01 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topological dynamics is the study of transformation groups with respect to those topological properties whose prototype occurred in classical dynamics. In this volume, Part One contains the general theory. Part Two contains notable examples of flows which have contributed to the general theory of topological dynamics and which have in turn have been illuminated by the general theory of topological dynamics.

Recurrence in Topological Dynamics

Download Recurrence in Topological Dynamics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780306455506
Total Pages : 292 pages
Book Rating : 4.4/5 (555 download)

DOWNLOAD NOW!


Book Synopsis Recurrence in Topological Dynamics by : Ethan Akin

Download or read book Recurrence in Topological Dynamics written by Ethan Akin and published by Springer Science & Business Media. This book was released on 1997-07-31 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This groundbreaking volume is the first to elaborate the theory of set families as a tool for studying the phenomenon of recurrence. The theory is implicit in such seminal works as Hillel Furstenberg's Recurrence in Ergodic Theory and Combinational Number Theory, but Ethan Akin's study elaborates it in detail, defining such elements of theory as: open families of special subsets the unification of several ideas associated with transitivity, ergodicity, and mixing the Ellis theory of enveloping semigroups for compact dynamical systems and new notions of equicontinuity, distality, and rigidity.

Topological Methods in Hydrodynamics

Download Topological Methods in Hydrodynamics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387225897
Total Pages : 376 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Topological Methods in Hydrodynamics by : Vladimir I. Arnold

Download or read book Topological Methods in Hydrodynamics written by Vladimir I. Arnold and published by Springer Science & Business Media. This book was released on 2008-01-08 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first monograph to treat topological, group-theoretic, and geometric problems of ideal hydrodynamics and magnetohydrodynamics from a unified point of view. It describes the necessary preliminary notions both in hydrodynamics and pure mathematics with numerous examples and figures. The book is accessible to graduates as well as pure and applied mathematicians working in hydrodynamics, Lie groups, dynamical systems, and differential geometry.

Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces

Download Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521660303
Total Pages : 214 pages
Book Rating : 4.6/5 (63 download)

DOWNLOAD NOW!


Book Synopsis Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces by : M. Bachir Bekka

Download or read book Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces written by M. Bachir Bekka and published by Cambridge University Press. This book was released on 2000-05-11 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, first published in 2000, focuses on developments in the study of geodesic flows on homogenous spaces.

Ergodic Theory

Download Ergodic Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0857290215
Total Pages : 486 pages
Book Rating : 4.8/5 (572 download)

DOWNLOAD NOW!


Book Synopsis Ergodic Theory by : Manfred Einsiedler

Download or read book Ergodic Theory written by Manfred Einsiedler and published by Springer Science & Business Media. This book was released on 2010-09-11 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is a rigorous introduction to ergodic theory, developing the machinery of conditional measures and expectations, mixing, and recurrence. Beginning by developing the basics of ergodic theory and progressing to describe some recent applications to number theory, this book goes beyond the standard texts in this topic. Applications include Weyl's polynomial equidistribution theorem, the ergodic proof of Szemeredi's theorem, the connection between the continued fraction map and the modular surface, and a proof of the equidistribution of horocycle orbits. Ergodic Theory with a view towards Number Theory will appeal to mathematicians with some standard background in measure theory and functional analysis. No background in ergodic theory or Lie theory is assumed, and a number of exercises and hints to problems are included, making this the perfect companion for graduate students and researchers in ergodic theory, homogenous dynamics or number theory.

Dynamic Topology

Download Dynamic Topology PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1468462628
Total Pages : 163 pages
Book Rating : 4.4/5 (684 download)

DOWNLOAD NOW!


Book Synopsis Dynamic Topology by : G. Whyburn

Download or read book Dynamic Topology written by G. Whyburn and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is a privilege for me to write a foreword for this unusual book. The book is not primarily a reference work although many of the ideas and proofs are explained more clearly here than in any other source that I know. Nor is this a text of the customary sort. It is rather a record of a particular course and Gordon Whyburn's special method of teaching it. Perhaps the easiest way to describe the course and the method is to relate my own personal experience with a forerunner of this same course in the academic year 1937-1938. At that time, the course was offered every other year with a following course in algebraic topology on alternate years. There were five of us enrolled, and on the average we knew less mathematics than is now routinely given in a junior course in analysis. Whyburn's purpose, as we learned, was to prepare us in minimal time for research in the areas in which he was inter ested. His method was remarkable.

Topological Dynamics and Topological Data Analysis

Download Topological Dynamics and Topological Data Analysis PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811601747
Total Pages : 278 pages
Book Rating : 4.8/5 (116 download)

DOWNLOAD NOW!


Book Synopsis Topological Dynamics and Topological Data Analysis by : Robert L. Devaney

Download or read book Topological Dynamics and Topological Data Analysis written by Robert L. Devaney and published by Springer Nature. This book was released on 2021-09-23 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects select papers presented at the International Workshop and Conference on Topology & Applications, held in Kochi, India, from 9–11 December 2018. The book discusses topics on topological dynamical systems and topological data analysis. Topics are ranging from general topology, algebraic topology, differential topology, fuzzy topology, topological dynamical systems, topological groups, linear dynamics, dynamics of operator network topology, iterated function systems and applications of topology. All contributing authors are eminent academicians, scientists, researchers and scholars in their respective fields, hailing from around the world. The book is a valuable resource for researchers, scientists and engineers from both academia and industry.

Topological and Symbolic Dynamics

Download Topological and Symbolic Dynamics PDF Online Free

Author :
Publisher : Société Mathématique de France
ISBN 13 :
Total Pages : 336 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Topological and Symbolic Dynamics by : Petr Kůrka

Download or read book Topological and Symbolic Dynamics written by Petr Kůrka and published by Société Mathématique de France. This book was released on 2003 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: A dynamical system is a continuous self-map of a compact metric space. Topological dynamics studies the iterations of such a map, or equivalently, the trajectories of points of the state space. The basic concepts of topological dynamics are minimality, transitivity, recurrence, shadowing property, stability, equicontinuity, sensitivity, attractors, and topological entropy. Symbolic dynamics studies dynamical systems whose state spaces are zero-dimensional and consist of sequences of symbols. The main classes of symbolic dynamical systems are adding machines, subshifts of finite type, sofic subshifts, Sturmian, substitutive and Toeplitz subshifts, and cellular automata.

Networks, Topology and Dynamics

Download Networks, Topology and Dynamics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540684093
Total Pages : 292 pages
Book Rating : 4.5/5 (46 download)

DOWNLOAD NOW!


Book Synopsis Networks, Topology and Dynamics by : Ahmad K. Naimzada

Download or read book Networks, Topology and Dynamics written by Ahmad K. Naimzada and published by Springer Science & Business Media. This book was released on 2008-11-14 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is convergent consensus among scientists that many social, economic and ?nancial phenomena can be described by a network of agents and their inter- tions. Surprisingly, even though the application ?elds are quite different, those n- works often show a common behaviour. Thus, their topological properties can give useful insights on how the network is structured, which are the most “important” nodes/agents, how the network reacts to new arrivals. Moreover the network, once included into a dynamic context, helps to model many phenomena. Among the t- ics in which topology and dynamics are the essential tools, we will focus on the diffusion of technologies and fads, the rise of industrial districts, the evolution of ?nancial markets, cooperation and competition, information ?ows, centrality and prestige. The volume, including recent contributions to the ?eld of network modelling, is based on the communications presented at NET 2006 (Verbania, Italy) and NET 2007 (Urbino, Italy); offers a wide range of recent advances, both theoretical and methodological, that will interest academics as well as practitioners. Theory and applications are nicely integrated: theoretical papers deal with graph theory, game theory, coalitions, dynamics, consumer behavior, segregation models and new contributions to the above mentioned area. The applications cover a wide range: airline transportation, ?nancial markets, work team organization, labour and credit market.

Introduction to the Modern Theory of Dynamical Systems

Download Introduction to the Modern Theory of Dynamical Systems PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521575577
Total Pages : 828 pages
Book Rating : 4.5/5 (755 download)

DOWNLOAD NOW!


Book Synopsis Introduction to the Modern Theory of Dynamical Systems by : Anatole Katok

Download or read book Introduction to the Modern Theory of Dynamical Systems written by Anatole Katok and published by Cambridge University Press. This book was released on 1995 with total page 828 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provided the first self-contained comprehensive exposition of the theory of dynamical systems as a core mathematical discipline closely intertwined with most of the main areas of mathematics. The authors introduce and rigorously develop the theory while providing researchers interested in applications with fundamental tools and paradigms. The book begins with a discussion of several elementary but fundamental examples. These are used to formulate a program for the general study of asymptotic properties and to introduce the principal theoretical concepts and methods. The main theme of the second part of the book is the interplay between local analysis near individual orbits and the global complexity of the orbit structure. The third and fourth parts develop the theories of low-dimensional dynamical systems and hyperbolic dynamical systems in depth. Over 400 systematic exercises are included in the text. The book is aimed at students and researchers in mathematics at all levels from advanced undergraduate up.

Complex Nonlinearity

Download Complex Nonlinearity PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540793577
Total Pages : 855 pages
Book Rating : 4.5/5 (47 download)

DOWNLOAD NOW!


Book Synopsis Complex Nonlinearity by : Vladimir G. Ivancevic

Download or read book Complex Nonlinearity written by Vladimir G. Ivancevic and published by Springer Science & Business Media. This book was released on 2008-05-31 with total page 855 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals is a book about prediction & control of general nonlinear and chaotic dynamics of high-dimensional complex systems of various physical and non-physical nature and their underpinning geometro-topological change. The book starts with a textbook-like expose on nonlinear dynamics, attractors and chaos, both temporal and spatio-temporal, including modern techniques of chaos–control. Chapter 2 turns to the edge of chaos, in the form of phase transitions (equilibrium and non-equilibrium, oscillatory, fractal and noise-induced), as well as the related field of synergetics. While the natural stage for linear dynamics comprises of flat, Euclidean geometry (with the corresponding calculation tools from linear algebra and analysis), the natural stage for nonlinear dynamics is curved, Riemannian geometry (with the corresponding tools from nonlinear, tensor algebra and analysis). The extreme nonlinearity – chaos – corresponds to the topology change of this curved geometrical stage, usually called configuration manifold. Chapter 3 elaborates on geometry and topology change in relation with complex nonlinearity and chaos. Chapter 4 develops general nonlinear dynamics, continuous and discrete, deterministic and stochastic, in the unique form of path integrals and their action-amplitude formalism. This most natural framework for representing both phase transitions and topology change starts with Feynman’s sum over histories, to be quickly generalized into the sum over geometries and topologies. The last Chapter puts all the previously developed techniques together and presents the unified form of complex nonlinearity. Here we have chaos, phase transitions, geometrical dynamics and topology change, all working together in the form of path integrals. The objective of this book is to provide a serious reader with a serious scientific tool that will enable them to actually perform a competitive research in modern complex nonlinearity. It includes a comprehensive bibliography on the subject and a detailed index. Target readership includes all researchers and students of complex nonlinear systems (in physics, mathematics, engineering, chemistry, biology, psychology, sociology, economics, medicine, etc.), working both in industry/clinics and academia.

The Space of Dynamical Systems with the C0-topology

Download The Space of Dynamical Systems with the C0-topology PDF Online Free

Author :
Publisher : Springer
ISBN 13 :
Total Pages : 212 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis The Space of Dynamical Systems with the C0-topology by : Sergei Yurievitch Pilyugin

Download or read book The Space of Dynamical Systems with the C0-topology written by Sergei Yurievitch Pilyugin and published by Springer. This book was released on 1994 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Topological Aspects of the Dynamics of Fluids and Plasmas

Download Topological Aspects of the Dynamics of Fluids and Plasmas PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401735506
Total Pages : 597 pages
Book Rating : 4.4/5 (17 download)

DOWNLOAD NOW!


Book Synopsis Topological Aspects of the Dynamics of Fluids and Plasmas by : H.K. Moffatt

Download or read book Topological Aspects of the Dynamics of Fluids and Plasmas written by H.K. Moffatt and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains papers arising out of the program of the Institute for Theoretical Physics (ITP) of the University of California at Santa Bar bara, August-December 1991, on the subject "Topological Fluid Dynamics". The first group of papers cover the lectures on Knot Theory, Relaxation un der Topological Constraints, Kinematics of Stretching, and Fast Dynamo Theory presented at the initial Pedagogical Workshop of the program. The remaining papers were presented at the subsequent NATO Advanced Re search Workshop or were written during the course of the program. We wish to acknowledge the support of the NATO Science Committee in making this workshop possible. The scope of "Topological Fluid Dynamics" was defined by an earlier Symposium of the International Union of Theoretical and Applied Mechan ics (IUTAM) held in Cambridge, England in August, 1989, the Proceedings of which were published (Eds. H.K. Moffatt and A. Tsinober) by Cambridge University Press in 1990. The proposal to hold an ITP program on this sub ject emerged from that Symposium, and we are grateful to John Greene and Charlie Kennel at whose encouragement the original proposal was formu lated. Topological fluid dynamics covers a range of problems, particularly those involving vortex tubes and/or magnetic flux tubes in nearly ideal fluids, for which topological structures can be identified and to some extent quantified.

Symbolic Dynamics

Download Symbolic Dynamics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642588220
Total Pages : 263 pages
Book Rating : 4.6/5 (425 download)

DOWNLOAD NOW!


Book Synopsis Symbolic Dynamics by : Bruce P. Kitchens

Download or read book Symbolic Dynamics written by Bruce P. Kitchens and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nearly one hundred years ago Jacques Hadamard used infinite sequences of symbols to analyze the distribution of geodesics on certain surfaces. That was the beginning of symbolic dynamics. In the 1930's and 40's Arnold Hedlund and Marston Morse again used infinite sequences to investigate geodesics on surfaces of negative curvature. They coined the term symbolic dynamics and began to study sequence spaces with the shift transformation as dynamical systems. In the 1940's Claude Shannon used sequence spaces to describe infor mation channels. Since that time symbolic dynamics has been used in ergodic theory, topological dynamics, hyperbolic dynamics, information theory and complex dynamics. Symbolic dynamical systems with a finite memory are stud ied in this book. They are the topological Markov shifts. Each can be defined by transition rules and the rules can be summarized by a transition matrix. The study naturally divides into two parts. The first part is about topological Markov shifts where the alphabet is finite. The second part is concerned with topological Markov shifts whose alphabet is count ably infinite. The techniques used in the two cases are quite different. When the alphabet is finite most of the methods are combinatorial or algebraic. When the alphabet is infinite the methods are much more analytic. This book grew from notes for a graduate course taught at Wesleyan Uni versity in the fall of 1994 and is intended as a graduate text and as a reference book for mathematicians working in related fields.

Dynamics of One-Dimensional Maps

Download Dynamics of One-Dimensional Maps PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 940158897X
Total Pages : 268 pages
Book Rating : 4.4/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Dynamics of One-Dimensional Maps by : A.N. Sharkovsky

Download or read book Dynamics of One-Dimensional Maps written by A.N. Sharkovsky and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: maps whose topological entropy is equal to zero (i.e., maps that have only cyeles of pe 2 riods 1,2,2 , ... ) are studied in detail and elassified. Various topological aspects of the dynamics of unimodal maps are studied in Chap ter 5. We analyze the distinctive features of the limiting behavior of trajectories of smooth maps. In particular, for some elasses of smooth maps, we establish theorems on the number of sinks and study the problem of existence of wandering intervals. In Chapter 6, for a broad elass of maps, we prove that almost all points (with respect to the Lebesgue measure) are attracted by the same sink. Our attention is mainly focused on the problem of existence of an invariant measure absolutely continuous with respect to the Lebesgue measure. We also study the problem of Lyapunov stability of dynamical systems and determine the measures of repelling and attracting invariant sets. The problem of stability of separate trajectories under perturbations of maps and the problem of structural stability of dynamical systems as a whole are discussed in Chap ter 7. In Chapter 8, we study one-parameter families of maps. We analyze bifurcations of periodic trajectories and properties of the set of bifurcation values of the parameter, in eluding universal properties such as Feigenbaum universality.

Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics

Download Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387499571
Total Pages : 460 pages
Book Rating : 4.3/5 (874 download)

DOWNLOAD NOW!


Book Synopsis Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics by : Marco Pettini

Download or read book Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics written by Marco Pettini and published by Springer Science & Business Media. This book was released on 2007-06-14 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers a new explanation of the origin of Hamiltonian chaos and its quantitative characterization. The author focuses on two main areas: Riemannian formulation of Hamiltonian dynamics, providing an original viewpoint about the relationship between geodesic instability and curvature properties of the mechanical manifolds; and a topological theory of thermodynamic phase transitions, relating topology changes of microscopic configuration space with the generation of singularities of thermodynamic observables. The book contains numerous illustrations throughout and it will interest both mathematicians and physicists.