Bernoulli Numbers and Zeta Functions

Download Bernoulli Numbers and Zeta Functions PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 4431549196
Total Pages : 278 pages
Book Rating : 4.4/5 (315 download)

DOWNLOAD NOW!


Book Synopsis Bernoulli Numbers and Zeta Functions by : Tsuneo Arakawa

Download or read book Bernoulli Numbers and Zeta Functions written by Tsuneo Arakawa and published by Springer. This book was released on 2014-07-11 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two major subjects are treated in this book. The main one is the theory of Bernoulli numbers and the other is the theory of zeta functions. Historically, Bernoulli numbers were introduced to give formulas for the sums of powers of consecutive integers. The real reason that they are indispensable for number theory, however, lies in the fact that special values of the Riemann zeta function can be written by using Bernoulli numbers. This leads to more advanced topics, a number of which are treated in this book: Historical remarks on Bernoulli numbers and the formula for the sum of powers of consecutive integers; a formula for Bernoulli numbers by Stirling numbers; the Clausen–von Staudt theorem on the denominators of Bernoulli numbers; Kummer's congruence between Bernoulli numbers and a related theory of p-adic measures; the Euler–Maclaurin summation formula; the functional equation of the Riemann zeta function and the Dirichlet L functions, and their special values at suitable integers; various formulas of exponential sums expressed by generalized Bernoulli numbers; the relation between ideal classes of orders of quadratic fields and equivalence classes of binary quadratic forms; class number formula for positive definite binary quadratic forms; congruences between some class numbers and Bernoulli numbers; simple zeta functions of prehomogeneous vector spaces; Hurwitz numbers; Barnes multiple zeta functions and their special values; the functional equation of the doub le zeta functions; and poly-Bernoulli numbers. An appendix by Don Zagier on curious and exotic identities for Bernoulli numbers is also supplied. This book will be enjoyable both for amateurs and for professional researchers. Because the logical relations between the chapters are loosely connected, readers can start with any chapter depending on their interests. The expositions of the topics are not always typical, and some parts are completely new.

Bernoulli Numbers and Zeta Functions

Download Bernoulli Numbers and Zeta Functions PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9784431549208
Total Pages : 274 pages
Book Rating : 4.5/5 (492 download)

DOWNLOAD NOW!


Book Synopsis Bernoulli Numbers and Zeta Functions by : Tsuneo Arakawa

Download or read book Bernoulli Numbers and Zeta Functions written by Tsuneo Arakawa and published by Springer. This book was released on 2014-07-16 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two major subjects are treated in this book. The main one is the theory of Bernoulli numbers and the other is the theory of zeta functions. Historically, Bernoulli numbers were introduced to give formulas for the sums of powers of consecutive integers. The real reason that they are indispensable for number theory, however, lies in the fact that special values of the Riemann zeta function can be written by using Bernoulli numbers. This leads to more advanced topics, a number of which are treated in this book: Historical remarks on Bernoulli numbers and the formula for the sum of powers of consecutive integers; a formula for Bernoulli numbers by Stirling numbers; the Clausen–von Staudt theorem on the denominators of Bernoulli numbers; Kummer's congruence between Bernoulli numbers and a related theory of p-adic measures; the Euler–Maclaurin summation formula; the functional equation of the Riemann zeta function and the Dirichlet L functions, and their special values at suitable integers; various formulas of exponential sums expressed by generalized Bernoulli numbers; the relation between ideal classes of orders of quadratic fields and equivalence classes of binary quadratic forms; class number formula for positive definite binary quadratic forms; congruences between some class numbers and Bernoulli numbers; simple zeta functions of prehomogeneous vector spaces; Hurwitz numbers; Barnes multiple zeta functions and their special values; the functional equation of the double zeta functions; and poly-Bernoulli numbers. An appendix by Don Zagier on curious and exotic identities for Bernoulli numbers is also supplied. This book will be enjoyable both for amateurs and for professional researchers. Because the logical relations between the chapters are loosely connected, readers can start with any chapter depending on their interests. The expositions of the topics are not always typical, and some parts are completely new.

Series Associated With the Zeta and Related Functions

Download Series Associated With the Zeta and Related Functions PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780792370543
Total Pages : 408 pages
Book Rating : 4.3/5 (75 download)

DOWNLOAD NOW!


Book Synopsis Series Associated With the Zeta and Related Functions by : Hari M. Srivastava

Download or read book Series Associated With the Zeta and Related Functions written by Hari M. Srivastava and published by Springer Science & Business Media. This book was released on 2001 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years there has been an increasing interest in problems involving closed form evaluations of (and representations of the Riemann Zeta function at positive integer arguments as) various families of series associated with the Riemann Zeta function ((s), the Hurwitz Zeta function ((s,a), and their such extensions and generalizations as (for example) Lerch's transcendent (or the Hurwitz-Lerch Zeta function) iI>(z, s, a). Some of these developments have apparently stemmed from an over two-century-old theorem of Christian Goldbach (1690-1764), which was stated in a letter dated 1729 from Goldbach to Daniel Bernoulli (1700-1782), from recent rediscoveries of a fairly rapidly convergent series representation for ((3), which is actually contained in a 1772 paper by Leonhard Euler (1707-1783), and from another known series representation for ((3), which was used by Roger Apery (1916-1994) in 1978 in his celebrated proof of the irrationality of ((3). This book is motivated essentially by the fact that the theories and applications of the various methods and techniques used in dealing with many different families of series associated with the Riemann Zeta function and its aforementioned relatives are to be found so far only"in widely scattered journal articles. Thus our systematic (and unified) presentation of these results on the evaluation and representation of the Zeta and related functions is expected to fill a conspicuous gap in the existing books dealing exclusively with these Zeta functions.

Zeta and Q-Zeta Functions and Associated Series and Integrals

Download Zeta and Q-Zeta Functions and Associated Series and Integrals PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0123852188
Total Pages : 675 pages
Book Rating : 4.1/5 (238 download)

DOWNLOAD NOW!


Book Synopsis Zeta and Q-Zeta Functions and Associated Series and Integrals by : H. M. Srivastava

Download or read book Zeta and Q-Zeta Functions and Associated Series and Integrals written by H. M. Srivastava and published by Elsevier. This book was released on 2011-10-25 with total page 675 pages. Available in PDF, EPUB and Kindle. Book excerpt: Zeta and q-Zeta Functions and Associated Series and Integrals is a thoroughly revised, enlarged and updated version of Series Associated with the Zeta and Related Functions. Many of the chapters and sections of the book have been significantly modified or rewritten, and a new chapter on the theory and applications of the basic (or q-) extensions of various special functions is included. This book will be invaluable because it covers not only detailed and systematic presentations of the theory and applications of the various methods and techniques used in dealing with many different classes of series and integrals associated with the Zeta and related functions, but stimulating historical accounts of a large number of problems and well-classified tables of series and integrals. Detailed and systematic presentations of the theory and applications of the various methods and techniques used in dealing with many different classes of series and integrals associated with the Zeta and related functions

Prime Numbers and the Riemann Hypothesis

Download Prime Numbers and the Riemann Hypothesis PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107101921
Total Pages : 155 pages
Book Rating : 4.1/5 (71 download)

DOWNLOAD NOW!


Book Synopsis Prime Numbers and the Riemann Hypothesis by : Barry Mazur

Download or read book Prime Numbers and the Riemann Hypothesis written by Barry Mazur and published by Cambridge University Press. This book was released on 2016-04-11 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces prime numbers and explains the famous unsolved Riemann hypothesis.

Zeta Functions of Graphs

Download Zeta Functions of Graphs PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139491784
Total Pages : 253 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Zeta Functions of Graphs by : Audrey Terras

Download or read book Zeta Functions of Graphs written by Audrey Terras and published by Cambridge University Press. This book was released on 2010-11-18 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graph theory meets number theory in this stimulating book. Ihara zeta functions of finite graphs are reciprocals of polynomials, sometimes in several variables. Analogies abound with number-theoretic functions such as Riemann/Dedekind zeta functions. For example, there is a Riemann hypothesis (which may be false) and prime number theorem for graphs. Explicit constructions of graph coverings use Galois theory to generalize Cayley and Schreier graphs. Then non-isomorphic simple graphs with the same zeta are produced, showing you cannot hear the shape of a graph. The spectra of matrices such as the adjacency and edge adjacency matrices of a graph are essential to the plot of this book, which makes connections with quantum chaos and random matrix theory, plus expander/Ramanujan graphs of interest in computer science. Created for beginning graduate students, the book will also appeal to researchers. Many well-chosen illustrations and exercises, both theoretical and computer-based, are included throughout.

The Riemann Zeta-Function

Download The Riemann Zeta-Function PDF Online Free

Author :
Publisher : Walter de Gruyter
ISBN 13 : 3110886146
Total Pages : 409 pages
Book Rating : 4.1/5 (18 download)

DOWNLOAD NOW!


Book Synopsis The Riemann Zeta-Function by : Anatoly A. Karatsuba

Download or read book The Riemann Zeta-Function written by Anatoly A. Karatsuba and published by Walter de Gruyter. This book was released on 2011-05-03 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany

The Bloch–Kato Conjecture for the Riemann Zeta Function

Download The Bloch–Kato Conjecture for the Riemann Zeta Function PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316241300
Total Pages : 317 pages
Book Rating : 4.3/5 (162 download)

DOWNLOAD NOW!


Book Synopsis The Bloch–Kato Conjecture for the Riemann Zeta Function by : John Coates

Download or read book The Bloch–Kato Conjecture for the Riemann Zeta Function written by John Coates and published by Cambridge University Press. This book was released on 2015-03-19 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are still many arithmetic mysteries surrounding the values of the Riemann zeta function at the odd positive integers greater than one. For example, the matter of their irrationality, let alone transcendence, remains largely unknown. However, by extending ideas of Garland, Borel proved that these values are related to the higher K-theory of the ring of integers. Shortly afterwards, Bloch and Kato proposed a Tamagawa number-type conjecture for these values, and showed that it would follow from a result in motivic cohomology which was unknown at the time. This vital result from motivic cohomology was subsequently proven by Huber, Kings, and Wildeshaus. Bringing together key results from K-theory, motivic cohomology, and Iwasawa theory, this book is the first to give a complete proof, accessible to graduate students, of the Bloch–Kato conjecture for odd positive integers. It includes a new account of the results from motivic cohomology by Huber and Kings.

Euler

Download Euler PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 147046618X
Total Pages : 185 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Euler by : William Dunham

Download or read book Euler written by William Dunham and published by American Mathematical Society. This book was released on 2022-01-13 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leonhard Euler was one of the most prolific mathematicians that have ever lived. This book examines the huge scope of mathematical areas explored and developed by Euler, which includes number theory, combinatorics, geometry, complex variables and many more. The information known to Euler over 300 years ago is discussed, and many of his advances are reconstructed. Readers will be left in no doubt about the brilliance and pervasive influence of Euler's work.

p-adic Numbers, p-adic Analysis, and Zeta-Functions

Download p-adic Numbers, p-adic Analysis, and Zeta-Functions PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461211123
Total Pages : 163 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis p-adic Numbers, p-adic Analysis, and Zeta-Functions by : Neal Koblitz

Download or read book p-adic Numbers, p-adic Analysis, and Zeta-Functions written by Neal Koblitz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first edition of this work has become the standard introduction to the theory of p-adic numbers at both the advanced undergraduate and beginning graduate level. This second edition includes a deeper treatment of p-adic functions in Ch. 4 to include the Iwasawa logarithm and the p-adic gamma-function, the rearrangement and addition of some exercises, the inclusion of an extensive appendix of answers and hints to the exercises, as well as numerous clarifications.

Special Functions

Download Special Functions PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118030818
Total Pages : 392 pages
Book Rating : 4.1/5 (18 download)

DOWNLOAD NOW!


Book Synopsis Special Functions by : Nico M. Temme

Download or read book Special Functions written by Nico M. Temme and published by John Wiley & Sons. This book was released on 2011-03-01 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an introduction to the classical, well-known special functions which play a role in mathematical physics, especially in boundary value problems. Calculus and complex function theory form the basis of the book and numerous formulas are given. Particular attention is given to asymptomatic and numerical aspects of special functions, with numerous references to recent literature provided.

Cyclotomic Fields and Zeta Values

Download Cyclotomic Fields and Zeta Values PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540330690
Total Pages : 120 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Cyclotomic Fields and Zeta Values by : John Coates

Download or read book Cyclotomic Fields and Zeta Values written by John Coates and published by Springer Science & Business Media. This book was released on 2006-10-03 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by two leading workers in the field, this brief but elegant book presents in full detail the simplest proof of the "main conjecture" for cyclotomic fields. Its motivation stems not only from the inherent beauty of the subject, but also from the wider arithmetic interest of these questions. From the reviews: "The text is written in a clear and attractive style, with enough explanation helping the reader orientate in the midst of technical details." --ZENTRALBLATT MATH

Multiple Zeta Functions, Multiple Polylogarithms And Their Special Values

Download Multiple Zeta Functions, Multiple Polylogarithms And Their Special Values PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814689416
Total Pages : 618 pages
Book Rating : 4.8/5 (146 download)

DOWNLOAD NOW!


Book Synopsis Multiple Zeta Functions, Multiple Polylogarithms And Their Special Values by : Jianqiang Zhao

Download or read book Multiple Zeta Functions, Multiple Polylogarithms And Their Special Values written by Jianqiang Zhao and published by World Scientific. This book was released on 2016-03-07 with total page 618 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first introductory book on multiple zeta functions and multiple polylogarithms which are the generalizations of the Riemann zeta function and the classical polylogarithms, respectively, to the multiple variable setting. It contains all the basic concepts and the important properties of these functions and their special values. This book is aimed at graduate students, mathematicians and physicists who are interested in this current active area of research.The book will provide a detailed and comprehensive introduction to these objects, their fascinating properties and interesting relations to other mathematical subjects, and various generalizations such as their q-analogs and their finite versions (by taking partial sums modulo suitable prime powers). Historical notes and exercises are provided at the end of each chapter.

Proceedings of First International Conference on Mathematical Modeling and Computational Science

Download Proceedings of First International Conference on Mathematical Modeling and Computational Science PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9813343893
Total Pages : 675 pages
Book Rating : 4.8/5 (133 download)

DOWNLOAD NOW!


Book Synopsis Proceedings of First International Conference on Mathematical Modeling and Computational Science by : Sheng-Lung Peng

Download or read book Proceedings of First International Conference on Mathematical Modeling and Computational Science written by Sheng-Lung Peng and published by Springer Nature. This book was released on 2021-05-04 with total page 675 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the most recent scientific and technological advances in the fields of engineering mathematics and computational science, to strengthen the links in the scientific community. It is a collection of high-quality, peer-reviewed research papers presented at the First International Conference on Mathematical Modeling and Computational Science (ICMMCS 2020), held in Pattaya, Thailand, during 14–15 August 2020. The topics covered in the book are mathematical logic and foundations, numerical analysis, neural networks, fuzzy set theory, coding theory, higher algebra, number theory, graph theory and combinatory, computation in complex networks, calculus, differential educations and integration, application of soft computing, knowledge engineering, machine learning, artificial intelligence, big data and data analytics, high-performance computing, network and device security, and Internet of things (IoT).

Fractal Geometry and Number Theory

Download Fractal Geometry and Number Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461253144
Total Pages : 277 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Fractal Geometry and Number Theory by : Michel L. Lapidus

Download or read book Fractal Geometry and Number Theory written by Michel L. Lapidus and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: A fractal drum is a bounded open subset of R. m with a fractal boundary. A difficult problem is to describe the relationship between the shape (geo metry) of the drum and its sound (its spectrum). In this book, we restrict ourselves to the one-dimensional case of fractal strings, and their higher dimensional analogues, fractal sprays. We develop a theory of complex di mensions of a fractal string, and we study how these complex dimensions relate the geometry with the spectrum of the fractal string. We refer the reader to [Berrl-2, Lapl-4, LapPol-3, LapMal-2, HeLapl-2] and the ref erences therein for further physical and mathematical motivations of this work. (Also see, in particular, Sections 7. 1, 10. 3 and 10. 4, along with Ap pendix B.) In Chapter 1, we introduce the basic object of our research, fractal strings (see [Lapl-3, LapPol-3, LapMal-2, HeLapl-2]). A 'standard fractal string' is a bounded open subset of the real line. Such a set is a disjoint union of open intervals, the lengths of which form a sequence which we assume to be infinite. Important information about the geometry of . c is contained in its geometric zeta function (c(8) = L lj. j=l 2 Introduction We assume throughout that this function has a suitable meromorphic ex tension. The central notion of this book, the complex dimensions of a fractal string . c, is defined as the poles of the meromorphic extension of (c.

Introduction to Analytic Number Theory

Download Introduction to Analytic Number Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475755791
Total Pages : 352 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Analytic Number Theory by : Tom M. Apostol

Download or read book Introduction to Analytic Number Theory written by Tom M. Apostol and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book is the first volume of a two-volume textbook for undergraduates and is indeed the crystallization of a course offered by the author at the California Institute of Technology to undergraduates without any previous knowledge of number theory. For this reason, the book starts with the most elementary properties of the natural integers. Nevertheless, the text succeeds in presenting an enormous amount of material in little more than 300 pages."-—MATHEMATICAL REVIEWS

Introduction to Cyclotomic Fields

Download Introduction to Cyclotomic Fields PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461219345
Total Pages : 504 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Cyclotomic Fields by : Lawrence C. Washington

Download or read book Introduction to Cyclotomic Fields written by Lawrence C. Washington and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text on a central area of number theory covers p-adic L-functions, class numbers, cyclotomic units, Fermat’s Last Theorem, and Iwasawa’s theory of Z_p-extensions. This edition contains a new chapter on the work of Thaine, Kolyvagin, and Rubin, including a proof of the Main Conjecture, as well as a chapter on other recent developments, such as primality testing via Jacobi sums and Sinnott’s proof of the vanishing of Iwasawa’s f-invariant.