Handbook of Bayesian Variable Selection

Download Handbook of Bayesian Variable Selection PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000510255
Total Pages : 762 pages
Book Rating : 4.0/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Bayesian Variable Selection by : Mahlet G. Tadesse

Download or read book Handbook of Bayesian Variable Selection written by Mahlet G. Tadesse and published by CRC Press. This book was released on 2021-12-24 with total page 762 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian variable selection has experienced substantial developments over the past 30 years with the proliferation of large data sets. Identifying relevant variables to include in a model allows simpler interpretation, avoids overfitting and multicollinearity, and can provide insights into the mechanisms underlying an observed phenomenon. Variable selection is especially important when the number of potential predictors is substantially larger than the sample size and sparsity can reasonably be assumed. The Handbook of Bayesian Variable Selection provides a comprehensive review of theoretical, methodological and computational aspects of Bayesian methods for variable selection. The topics covered include spike-and-slab priors, continuous shrinkage priors, Bayes factors, Bayesian model averaging, partitioning methods, as well as variable selection in decision trees and edge selection in graphical models. The handbook targets graduate students and established researchers who seek to understand the latest developments in the field. It also provides a valuable reference for all interested in applying existing methods and/or pursuing methodological extensions. Features: Provides a comprehensive review of methods and applications of Bayesian variable selection. Divided into four parts: Spike-and-Slab Priors; Continuous Shrinkage Priors; Extensions to various Modeling; Other Approaches to Bayesian Variable Selection. Covers theoretical and methodological aspects, as well as worked out examples with R code provided in the online supplement. Includes contributions by experts in the field. Supported by a website with code, data, and other supplementary material

Economic Analysis of the Digital Economy

Download Economic Analysis of the Digital Economy PDF Online Free

Author :
Publisher : University of Chicago Press
ISBN 13 : 022620684X
Total Pages : 510 pages
Book Rating : 4.2/5 (262 download)

DOWNLOAD NOW!


Book Synopsis Economic Analysis of the Digital Economy by : Avi Goldfarb

Download or read book Economic Analysis of the Digital Economy written by Avi Goldfarb and published by University of Chicago Press. This book was released on 2015-05-08 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is a small and growing literature that explores the impact of digitization in a variety of contexts, but its economic consequences, surprisingly, remain poorly understood. This volume aims to set the agenda for research in the economics of digitization, with each chapter identifying a promising area of research. "Economics of Digitization "identifies urgent topics with research already underway that warrant further exploration from economists. In addition to the growing importance of digitization itself, digital technologies have some features that suggest that many well-studied economic models may not apply and, indeed, so many aspects of the digital economy throw normal economics in a loop. "Economics of Digitization" will be one of the first to focus on the economic implications of digitization and to bring together leading scholars in the economics of digitization to explore emerging research.

Handbook of Bayesian Variable Selection

Download Handbook of Bayesian Variable Selection PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000510204
Total Pages : 491 pages
Book Rating : 4.0/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Bayesian Variable Selection by : Mahlet G. Tadesse

Download or read book Handbook of Bayesian Variable Selection written by Mahlet G. Tadesse and published by CRC Press. This book was released on 2021-12-24 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian variable selection has experienced substantial developments over the past 30 years with the proliferation of large data sets. Identifying relevant variables to include in a model allows simpler interpretation, avoids overfitting and multicollinearity, and can provide insights into the mechanisms underlying an observed phenomenon. Variable selection is especially important when the number of potential predictors is substantially larger than the sample size and sparsity can reasonably be assumed. The Handbook of Bayesian Variable Selection provides a comprehensive review of theoretical, methodological and computational aspects of Bayesian methods for variable selection. The topics covered include spike-and-slab priors, continuous shrinkage priors, Bayes factors, Bayesian model averaging, partitioning methods, as well as variable selection in decision trees and edge selection in graphical models. The handbook targets graduate students and established researchers who seek to understand the latest developments in the field. It also provides a valuable reference for all interested in applying existing methods and/or pursuing methodological extensions. Features: Provides a comprehensive review of methods and applications of Bayesian variable selection. Divided into four parts: Spike-and-Slab Priors; Continuous Shrinkage Priors; Extensions to various Modeling; Other Approaches to Bayesian Variable Selection. Covers theoretical and methodological aspects, as well as worked out examples with R code provided in the online supplement. Includes contributions by experts in the field. Supported by a website with code, data, and other supplementary material

Intelligent Decision Technologies

Download Intelligent Decision Technologies PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9789811627675
Total Pages : 0 pages
Book Rating : 4.6/5 (276 download)

DOWNLOAD NOW!


Book Synopsis Intelligent Decision Technologies by : Ireneusz Czarnowski

Download or read book Intelligent Decision Technologies written by Ireneusz Czarnowski and published by Springer. This book was released on 2022-07-09 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains selected papers from the KES-IDT-2021 conference, being held as a virtual conference in June 14–16, 2021. The KES-IDT is an interdisciplinary conference with opportunities for the presentation of new research results and discussion about them under the common title "Intelligent Decision Technologies". The conference has been creating for years a platform for knowledge transfer and the generation of new ideas in the field of intelligent decision making. The range of topics discussed during the conference covered methods of classification, prediction, data analysis, big data, decision support, knowledge engineering, modeling, social networks and many more in areas such as finance, economy, management and transportation. The discussed topics covered also decision making for problems regarding the electric vehicle industry. The book contains also several sections devoted to specific topics, such as Advances in intelligent data processing and its applications Multi-criteria decision analysis methods Knowledge engineering in large-scale systems High-dimensional data analysis Spatial data analysis and sparse estimation Innovative technologies and applications in computer intelligence Intelligent diagnosis and monitoring of systems Decision making theory for economics.

Gaussian Markov Random Fields

Download Gaussian Markov Random Fields PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0203492021
Total Pages : 280 pages
Book Rating : 4.2/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Gaussian Markov Random Fields by : Havard Rue

Download or read book Gaussian Markov Random Fields written by Havard Rue and published by CRC Press. This book was released on 2005-02-18 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gaussian Markov Random Field (GMRF) models are most widely used in spatial statistics - a very active area of research in which few up-to-date reference works are available. This is the first book on the subject that provides a unified framework of GMRFs with particular emphasis on the computational aspects. This book includes extensive case-studie

Flexible Bayesian Regression Modelling

Download Flexible Bayesian Regression Modelling PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128158638
Total Pages : 304 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Flexible Bayesian Regression Modelling by : Yanan Fan

Download or read book Flexible Bayesian Regression Modelling written by Yanan Fan and published by Academic Press. This book was released on 2019-10-30 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Flexible Bayesian Regression Modeling is a step-by-step guide to the Bayesian revolution in regression modeling, for use in advanced econometric and statistical analysis where datasets are characterized by complexity, multiplicity, and large sample sizes, necessitating the need for considerable flexibility in modeling techniques. It reviews three forms of flexibility: methods which provide flexibility in their error distribution; methods which model non-central parts of the distribution (such as quantile regression); and finally models that allow the mean function to be flexible (such as spline models). Each chapter discusses the key aspects of fitting a regression model. R programs accompany the methods. This book is particularly relevant to non-specialist practitioners with intermediate mathematical training seeking to apply Bayesian approaches in economics, biology, finance, engineering and medicine. - Introduces powerful new nonparametric Bayesian regression techniques to classically trained practitioners - Focuses on approaches offering both superior power and methodological flexibility - Supplemented with instructive and relevant R programs within the text - Covers linear regression, nonlinear regression and quantile regression techniques - Provides diverse disciplinary case studies for correlation and optimization problems drawn from Bayesian analysis 'in the wild'

Bayesian Structural Equation Modeling

Download Bayesian Structural Equation Modeling PDF Online Free

Author :
Publisher : Guilford Publications
ISBN 13 : 1462547745
Total Pages : 549 pages
Book Rating : 4.4/5 (625 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Structural Equation Modeling by : Sarah Depaoli

Download or read book Bayesian Structural Equation Modeling written by Sarah Depaoli and published by Guilford Publications. This book was released on 2021-08-16 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers researchers a systematic and accessible introduction to using a Bayesian framework in structural equation modeling (SEM). Stand-alone chapters on each SEM model clearly explain the Bayesian form of the model and walk the reader through implementation. Engaging worked-through examples from diverse social science subfields illustrate the various modeling techniques, highlighting statistical or estimation problems that are likely to arise and describing potential solutions. For each model, instructions are provided for writing up findings for publication, including annotated sample data analysis plans and results sections. Other user-friendly features in every chapter include "Major Take-Home Points," notation glossaries, annotated suggestions for further reading, and sample code in both Mplus and R. The companion website (www.guilford.com/depaoli-materials) supplies data sets; annotated code for implementation in both Mplus and R, so that users can work within their preferred platform; and output for all of the book’s examples.

Bayesian Biostatistics

Download Bayesian Biostatistics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470018232
Total Pages : 544 pages
Book Rating : 4.4/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Biostatistics by : Emmanuel Lesaffre

Download or read book Bayesian Biostatistics written by Emmanuel Lesaffre and published by John Wiley & Sons. This book was released on 2012-08-13 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: The growth of biostatistics has been phenomenal in recent years and has been marked by considerable technical innovation in both methodology and computational practicality. One area that has experienced significant growth is Bayesian methods. The growing use of Bayesian methodology has taken place partly due to an increasing number of practitioners valuing the Bayesian paradigm as matching that of scientific discovery. In addition, computational advances have allowed for more complex models to be fitted routinely to realistic data sets. Through examples, exercises and a combination of introductory and more advanced chapters, this book provides an invaluable understanding of the complex world of biomedical statistics illustrated via a diverse range of applications taken from epidemiology, exploratory clinical studies, health promotion studies, image analysis and clinical trials. Key Features: Provides an authoritative account of Bayesian methodology, from its most basic elements to its practical implementation, with an emphasis on healthcare techniques. Contains introductory explanations of Bayesian principles common to all areas of application. Presents clear and concise examples in biostatistics applications such as clinical trials, longitudinal studies, bioassay, survival, image analysis and bioinformatics. Illustrated throughout with examples using software including WinBUGS, OpenBUGS, SAS and various dedicated R programs. Highlights the differences between the Bayesian and classical approaches. Supported by an accompanying website hosting free software and case study guides. Bayesian Biostatistics introduces the reader smoothly into the Bayesian statistical methods with chapters that gradually increase in level of complexity. Master students in biostatistics, applied statisticians and all researchers with a good background in classical statistics who have interest in Bayesian methods will find this book useful.

Bayesian Theory and Applications

Download Bayesian Theory and Applications PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 0199695601
Total Pages : 717 pages
Book Rating : 4.1/5 (996 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Theory and Applications by : Paul Damien

Download or read book Bayesian Theory and Applications written by Paul Damien and published by Oxford University Press. This book was released on 2013-01-24 with total page 717 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume guides the reader along a statistical journey that begins with the basic structure of Bayesian theory, and then provides details on most of the past and present advances in this field.

Intelligent Decision Technologies

Download Intelligent Decision Technologies PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811627657
Total Pages : 671 pages
Book Rating : 4.8/5 (116 download)

DOWNLOAD NOW!


Book Synopsis Intelligent Decision Technologies by : Ireneusz Czarnowski

Download or read book Intelligent Decision Technologies written by Ireneusz Czarnowski and published by Springer Nature. This book was released on 2021-07-07 with total page 671 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains selected papers from the KES-IDT-2021 conference, being held as a virtual conference in June 14–16, 2021. The KES-IDT is an interdisciplinary conference with opportunities for the presentation of new research results and discussion about them under the common title "Intelligent Decision Technologies". The conference has been creating for years a platform for knowledge transfer and the generation of new ideas in the field of intelligent decision making. The range of topics discussed during the conference covered methods of classification, prediction, data analysis, big data, decision support, knowledge engineering, modeling, social networks and many more in areas such as finance, economy, management and transportation. The discussed topics covered also decision making for problems regarding the electric vehicle industry. The book contains also several sections devoted to specific topics, such as Advances in intelligent data processing and its applications Multi-criteria decision analysis methods Knowledge engineering in large-scale systems High-dimensional data analysis Spatial data analysis and sparse estimation Innovative technologies and applications in computer intelligence Intelligent diagnosis and monitoring of systems Decision making theory for economics.

Bayesian Statistics 9

Download Bayesian Statistics 9 PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 0199694583
Total Pages : 717 pages
Book Rating : 4.1/5 (996 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Statistics 9 by : José M. Bernardo

Download or read book Bayesian Statistics 9 written by José M. Bernardo and published by Oxford University Press. This book was released on 2011-10-06 with total page 717 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian statistics is a dynamic and fast-growing area of statistical research and the Valencia International Meetings provide the main forum for discussion. These resulting proceedings form an up-to-date collection of research.

Economic Time Series

Download Economic Time Series PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439846588
Total Pages : 544 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Economic Time Series by : William R. Bell

Download or read book Economic Time Series written by William R. Bell and published by CRC Press. This book was released on 2018-11-14 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: Economic Time Series: Modeling and Seasonality is a focused resource on analysis of economic time series as pertains to modeling and seasonality, presenting cutting-edge research that would otherwise be scattered throughout diverse peer-reviewed journals. This compilation of 21 chapters showcases the cross-fertilization between the fields of time s

Probability and Bayesian Modeling

Download Probability and Bayesian Modeling PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351030132
Total Pages : 553 pages
Book Rating : 4.3/5 (51 download)

DOWNLOAD NOW!


Book Synopsis Probability and Bayesian Modeling by : Jim Albert

Download or read book Probability and Bayesian Modeling written by Jim Albert and published by CRC Press. This book was released on 2019-12-06 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability and Bayesian Modeling is an introduction to probability and Bayesian thinking for undergraduate students with a calculus background. The first part of the book provides a broad view of probability including foundations, conditional probability, discrete and continuous distributions, and joint distributions. Statistical inference is presented completely from a Bayesian perspective. The text introduces inference and prediction for a single proportion and a single mean from Normal sampling. After fundamentals of Markov Chain Monte Carlo algorithms are introduced, Bayesian inference is described for hierarchical and regression models including logistic regression. The book presents several case studies motivated by some historical Bayesian studies and the authors’ research. This text reflects modern Bayesian statistical practice. Simulation is introduced in all the probability chapters and extensively used in the Bayesian material to simulate from the posterior and predictive distributions. One chapter describes the basic tenets of Metropolis and Gibbs sampling algorithms; however several chapters introduce the fundamentals of Bayesian inference for conjugate priors to deepen understanding. Strategies for constructing prior distributions are described in situations when one has substantial prior information and for cases where one has weak prior knowledge. One chapter introduces hierarchical Bayesian modeling as a practical way of combining data from different groups. There is an extensive discussion of Bayesian regression models including the construction of informative priors, inference about functions of the parameters of interest, prediction, and model selection. The text uses JAGS (Just Another Gibbs Sampler) as a general-purpose computational method for simulating from posterior distributions for a variety of Bayesian models. An R package ProbBayes is available containing all of the book datasets and special functions for illustrating concepts from the book. A complete solutions manual is available for instructors who adopt the book in the Additional Resources section.

Statistics for Spatio-Temporal Data

Download Statistics for Spatio-Temporal Data PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119243041
Total Pages : 612 pages
Book Rating : 4.1/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Statistics for Spatio-Temporal Data by : Noel Cressie

Download or read book Statistics for Spatio-Temporal Data written by Noel Cressie and published by John Wiley & Sons. This book was released on 2015-11-02 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: Winner of the 2013 DeGroot Prize. A state-of-the-art presentation of spatio-temporal processes, bridging classic ideas with modern hierarchical statistical modeling concepts and the latest computational methods Noel Cressie and Christopher K. Wikle, are also winners of the 2011 PROSE Award in the Mathematics category, for the book “Statistics for Spatio-Temporal Data” (2011), published by John Wiley and Sons. (The PROSE awards, for Professional and Scholarly Excellence, are given by the Association of American Publishers, the national trade association of the US book publishing industry.) Statistics for Spatio-Temporal Data has now been reprinted with small corrections to the text and the bibliography. The overall content and pagination of the new printing remains the same; the difference comes in the form of corrections to typographical errors, editing of incomplete and missing references, and some updated spatio-temporal interpretations. From understanding environmental processes and climate trends to developing new technologies for mapping public-health data and the spread of invasive-species, there is a high demand for statistical analyses of data that take spatial, temporal, and spatio-temporal information into account. Statistics for Spatio-Temporal Data presents a systematic approach to key quantitative techniques that incorporate the latest advances in statistical computing as well as hierarchical, particularly Bayesian, statistical modeling, with an emphasis on dynamical spatio-temporal models. Cressie and Wikle supply a unique presentation that incorporates ideas from the areas of time series and spatial statistics as well as stochastic processes. Beginning with separate treatments of temporal data and spatial data, the book combines these concepts to discuss spatio-temporal statistical methods for understanding complex processes. Topics of coverage include: Exploratory methods for spatio-temporal data, including visualization, spectral analysis, empirical orthogonal function analysis, and LISAs Spatio-temporal covariance functions, spatio-temporal kriging, and time series of spatial processes Development of hierarchical dynamical spatio-temporal models (DSTMs), with discussion of linear and nonlinear DSTMs and computational algorithms for their implementation Quantifying and exploring spatio-temporal variability in scientific applications, including case studies based on real-world environmental data Throughout the book, interesting applications demonstrate the relevance of the presented concepts. Vivid, full-color graphics emphasize the visual nature of the topic, and a related FTP site contains supplementary material. Statistics for Spatio-Temporal Data is an excellent book for a graduate-level course on spatio-temporal statistics. It is also a valuable reference for researchers and practitioners in the fields of applied mathematics, engineering, and the environmental and health sciences.

Monte Carlo Simulation and Resampling Methods for Social Science

Download Monte Carlo Simulation and Resampling Methods for Social Science PDF Online Free

Author :
Publisher : SAGE Publications
ISBN 13 : 1483324923
Total Pages : 304 pages
Book Rating : 4.4/5 (833 download)

DOWNLOAD NOW!


Book Synopsis Monte Carlo Simulation and Resampling Methods for Social Science by : Thomas M. Carsey

Download or read book Monte Carlo Simulation and Resampling Methods for Social Science written by Thomas M. Carsey and published by SAGE Publications. This book was released on 2013-08-05 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Taking the topics of a quantitative methodology course and illustrating them through Monte Carlo simulation, this book examines abstract principles, such as bias, efficiency, and measures of uncertainty in an intuitive, visual way. Instead of thinking in the abstract about what would happen to a particular estimator "in repeated samples," the book uses simulation to actually create those repeated samples and summarize the results. The book includes basic examples appropriate for readers learning the material for the first time, as well as more advanced examples that a researcher might use to evaluate an estimator he or she was using in an actual research project. The book also covers a wide range of topics related to Monte Carlo simulation, such as resampling methods, simulations of substantive theory, simulation of quantities of interest (QI) from model results, and cross-validation. Complete R code from all examples is provided so readers can replicate every analysis presented using R.

Bayesian Statistics for the Social Sciences

Download Bayesian Statistics for the Social Sciences PDF Online Free

Author :
Publisher : Guilford Publications
ISBN 13 : 1462553540
Total Pages : 274 pages
Book Rating : 4.4/5 (625 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Statistics for the Social Sciences by : David Kaplan

Download or read book Bayesian Statistics for the Social Sciences written by David Kaplan and published by Guilford Publications. This book was released on 2023-11-10 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Since the publication of the first edition, Bayesian statistics is, arguably, still not the norm in the formal quantitative methods training of social scientists. Typically, the only introduction that a student might have to Bayesian ideas is a brief overview of Bayes' theorem while studying probability in an introductory statistics class. This is not surprising. First, until relatively recently, it was not feasible to conduct statistical modeling from a Bayesian perspective owing to its complexity and lack of available software. Second, Bayesian statistics represents a powerful alternative to frequentist (conventional) statistics and, therefore, can be controversial, especially in the context of null hypothesis significance testing. However, over the last 20 years, or so, considerably progress has been made in the development and application of complex Bayesian statistical methods, due mostly to developments and availability of proprietary and open-source statistical software tools. And, although Bayesian statistics is not quite yet an integral part of the quantitative training of social scientists, there has been increasing interest in the application of Bayesian methods, and it is not unreasonable to say that in terms of theoretical developments and substantive applications, Bayesian statistics has arrived. Because of extensive developments in Bayesian theory and computation since the publication of the first edition of this book, there was a pressing need for a thorough update of the material to reflect new developments in Bayesian methodology and software. The basic foundations of Bayesian statistics remain more or less the same, but this second edition encompasses many new extensions"--

Case Studies in Applied Bayesian Data Science

Download Case Studies in Applied Bayesian Data Science PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030425533
Total Pages : 415 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Case Studies in Applied Bayesian Data Science by : Kerrie L. Mengersen

Download or read book Case Studies in Applied Bayesian Data Science written by Kerrie L. Mengersen and published by Springer Nature. This book was released on 2020-05-28 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting a range of substantive applied problems within Bayesian Statistics along with their Bayesian solutions, this book arises from a research program at CIRM in France in the second semester of 2018, which supported Kerrie Mengersen as a visiting Jean-Morlet Chair and Pierre Pudlo as the local Research Professor. The field of Bayesian statistics has exploded over the past thirty years and is now an established field of research in mathematical statistics and computer science, a key component of data science, and an underpinning methodology in many domains of science, business and social science. Moreover, while remaining naturally entwined, the three arms of Bayesian statistics, namely modelling, computation and inference, have grown into independent research fields. While the research arms of Bayesian statistics continue to grow in many directions, they are harnessed when attention turns to solving substantive applied problems. Each such problem set has its own challenges and hence draws from the suite of research a bespoke solution. The book will be useful for both theoretical and applied statisticians, as well as practitioners, to inspect these solutions in the context of the problems, in order to draw further understanding, awareness and inspiration.