Bayesian Data Analysis, Third Edition

Download Bayesian Data Analysis, Third Edition PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439840954
Total Pages : 677 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Data Analysis, Third Edition by : Andrew Gelman

Download or read book Bayesian Data Analysis, Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Handbook of Bayesian Variable Selection

Download Handbook of Bayesian Variable Selection PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000510255
Total Pages : 762 pages
Book Rating : 4.0/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Bayesian Variable Selection by : Mahlet G. Tadesse

Download or read book Handbook of Bayesian Variable Selection written by Mahlet G. Tadesse and published by CRC Press. This book was released on 2021-12-24 with total page 762 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian variable selection has experienced substantial developments over the past 30 years with the proliferation of large data sets. Identifying relevant variables to include in a model allows simpler interpretation, avoids overfitting and multicollinearity, and can provide insights into the mechanisms underlying an observed phenomenon. Variable selection is especially important when the number of potential predictors is substantially larger than the sample size and sparsity can reasonably be assumed. The Handbook of Bayesian Variable Selection provides a comprehensive review of theoretical, methodological and computational aspects of Bayesian methods for variable selection. The topics covered include spike-and-slab priors, continuous shrinkage priors, Bayes factors, Bayesian model averaging, partitioning methods, as well as variable selection in decision trees and edge selection in graphical models. The handbook targets graduate students and established researchers who seek to understand the latest developments in the field. It also provides a valuable reference for all interested in applying existing methods and/or pursuing methodological extensions. Features: Provides a comprehensive review of methods and applications of Bayesian variable selection. Divided into four parts: Spike-and-Slab Priors; Continuous Shrinkage Priors; Extensions to various Modeling; Other Approaches to Bayesian Variable Selection. Covers theoretical and methodological aspects, as well as worked out examples with R code provided in the online supplement. Includes contributions by experts in the field. Supported by a website with code, data, and other supplementary material

Handbook of Mixture Analysis

Download Handbook of Mixture Analysis PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429508867
Total Pages : 489 pages
Book Rating : 4.4/5 (295 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Mixture Analysis by : Sylvia Fruhwirth-Schnatter

Download or read book Handbook of Mixture Analysis written by Sylvia Fruhwirth-Schnatter and published by CRC Press. This book was released on 2019-01-04 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mixture models have been around for over 150 years, and they are found in many branches of statistical modelling, as a versatile and multifaceted tool. They can be applied to a wide range of data: univariate or multivariate, continuous or categorical, cross-sectional, time series, networks, and much more. Mixture analysis is a very active research topic in statistics and machine learning, with new developments in methodology and applications taking place all the time. The Handbook of Mixture Analysis is a very timely publication, presenting a broad overview of the methods and applications of this important field of research. It covers a wide array of topics, including the EM algorithm, Bayesian mixture models, model-based clustering, high-dimensional data, hidden Markov models, and applications in finance, genomics, and astronomy. Features: Provides a comprehensive overview of the methods and applications of mixture modelling and analysis Divided into three parts: Foundations and Methods; Mixture Modelling and Extensions; and Selected Applications Contains many worked examples using real data, together with computational implementation, to illustrate the methods described Includes contributions from the leading researchers in the field The Handbook of Mixture Analysis is targeted at graduate students and young researchers new to the field. It will also be an important reference for anyone working in this field, whether they are developing new methodology, or applying the models to real scientific problems.

Bayesian Theory and Applications

Download Bayesian Theory and Applications PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 0199695601
Total Pages : 717 pages
Book Rating : 4.1/5 (996 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Theory and Applications by : Paul Damien

Download or read book Bayesian Theory and Applications written by Paul Damien and published by Oxford University Press. This book was released on 2013-01-24 with total page 717 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume guides the reader along a statistical journey that begins with the basic structure of Bayesian theory, and then provides details on most of the past and present advances in this field.

Bayesian Structural Equation Modeling

Download Bayesian Structural Equation Modeling PDF Online Free

Author :
Publisher : Guilford Publications
ISBN 13 : 1462547745
Total Pages : 549 pages
Book Rating : 4.4/5 (625 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Structural Equation Modeling by : Sarah Depaoli

Download or read book Bayesian Structural Equation Modeling written by Sarah Depaoli and published by Guilford Publications. This book was released on 2021-08-16 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers researchers a systematic and accessible introduction to using a Bayesian framework in structural equation modeling (SEM). Stand-alone chapters on each SEM model clearly explain the Bayesian form of the model and walk the reader through implementation. Engaging worked-through examples from diverse social science subfields illustrate the various modeling techniques, highlighting statistical or estimation problems that are likely to arise and describing potential solutions. For each model, instructions are provided for writing up findings for publication, including annotated sample data analysis plans and results sections. Other user-friendly features in every chapter include "Major Take-Home Points," notation glossaries, annotated suggestions for further reading, and sample code in both Mplus and R. The companion website (www.guilford.com/depaoli-materials) supplies data sets; annotated code for implementation in both Mplus and R, so that users can work within their preferred platform; and output for all of the book’s examples.

Bayesian Statistics 9

Download Bayesian Statistics 9 PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 0199694583
Total Pages : 717 pages
Book Rating : 4.1/5 (996 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Statistics 9 by : José M. Bernardo

Download or read book Bayesian Statistics 9 written by José M. Bernardo and published by Oxford University Press. This book was released on 2011-10-06 with total page 717 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian statistics is a dynamic and fast-growing area of statistical research and the Valencia International Meetings provide the main forum for discussion. These resulting proceedings form an up-to-date collection of research.

Finite Mixture and Markov Switching Models

Download Finite Mixture and Markov Switching Models PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387357688
Total Pages : 506 pages
Book Rating : 4.3/5 (873 download)

DOWNLOAD NOW!


Book Synopsis Finite Mixture and Markov Switching Models by : Sylvia Frühwirth-Schnatter

Download or read book Finite Mixture and Markov Switching Models written by Sylvia Frühwirth-Schnatter and published by Springer Science & Business Media. This book was released on 2006-11-24 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: The past decade has seen powerful new computational tools for modeling which combine a Bayesian approach with recent Monte simulation techniques based on Markov chains. This book is the first to offer a systematic presentation of the Bayesian perspective of finite mixture modelling. The book is designed to show finite mixture and Markov switching models are formulated, what structures they imply on the data, their potential uses, and how they are estimated. Presenting its concepts informally without sacrificing mathematical correctness, it will serve a wide readership including statisticians as well as biologists, economists, engineers, financial and market researchers.

Probability Distributions Used in Reliability Engineering

Download Probability Distributions Used in Reliability Engineering PDF Online Free

Author :
Publisher : RIAC
ISBN 13 : 1933904062
Total Pages : 220 pages
Book Rating : 4.9/5 (339 download)

DOWNLOAD NOW!


Book Synopsis Probability Distributions Used in Reliability Engineering by : Andrew N O'Connor

Download or read book Probability Distributions Used in Reliability Engineering written by Andrew N O'Connor and published by RIAC. This book was released on 2011 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides details on 22 probability distributions. Each distribution section provides a graphical visualization and formulas for distribution parameters, along with distribution formulas. Common statistics such as moments and percentile formulas are followed by likelihood functions and in many cases the derivation of maximum likelihood estimates. Bayesian non-informative and conjugate priors are provided followed by a discussion on the distribution characteristics and applications in reliability engineering.

Statistical Foundations of Data Science

Download Statistical Foundations of Data Science PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429527616
Total Pages : 974 pages
Book Rating : 4.4/5 (295 download)

DOWNLOAD NOW!


Book Synopsis Statistical Foundations of Data Science by : Jianqing Fan

Download or read book Statistical Foundations of Data Science written by Jianqing Fan and published by CRC Press. This book was released on 2020-09-21 with total page 974 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.

A First Course in Bayesian Statistical Methods

Download A First Course in Bayesian Statistical Methods PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387924078
Total Pages : 270 pages
Book Rating : 4.3/5 (879 download)

DOWNLOAD NOW!


Book Synopsis A First Course in Bayesian Statistical Methods by : Peter D. Hoff

Download or read book A First Course in Bayesian Statistical Methods written by Peter D. Hoff and published by Springer Science & Business Media. This book was released on 2009-06-02 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained introduction to probability, exchangeability and Bayes’ rule provides a theoretical understanding of the applied material. Numerous examples with R-code that can be run "as-is" allow the reader to perform the data analyses themselves. The development of Monte Carlo and Markov chain Monte Carlo methods in the context of data analysis examples provides motivation for these computational methods.

Data Science and Machine Learning

Download Data Science and Machine Learning PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000730778
Total Pages : 538 pages
Book Rating : 4.0/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Data Science and Machine Learning by : Dirk P. Kroese

Download or read book Data Science and Machine Learning written by Dirk P. Kroese and published by CRC Press. This book was released on 2019-11-20 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code

Computational Bayesian Statistics

Download Computational Bayesian Statistics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108481035
Total Pages : 256 pages
Book Rating : 4.1/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Computational Bayesian Statistics by : M. Antónia Amaral Turkman

Download or read book Computational Bayesian Statistics written by M. Antónia Amaral Turkman and published by Cambridge University Press. This book was released on 2019-02-28 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This integrated introduction to fundamentals, computation, and software is your key to understanding and using advanced Bayesian methods.

Dynamic Linear Models with R

Download Dynamic Linear Models with R PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387772383
Total Pages : 258 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Dynamic Linear Models with R by : Giovanni Petris

Download or read book Dynamic Linear Models with R written by Giovanni Petris and published by Springer Science & Business Media. This book was released on 2009-06-12 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: State space models have gained tremendous popularity in recent years in as disparate fields as engineering, economics, genetics and ecology. After a detailed introduction to general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. Whenever possible it is shown how to compute estimates and forecasts in closed form; for more complex models, simulation techniques are used. A final chapter covers modern sequential Monte Carlo algorithms. The book illustrates all the fundamental steps needed to use dynamic linear models in practice, using R. Many detailed examples based on real data sets are provided to show how to set up a specific model, estimate its parameters, and use it for forecasting. All the code used in the book is available online. No prior knowledge of Bayesian statistics or time series analysis is required, although familiarity with basic statistics and R is assumed.

Bayesian Core: A Practical Approach to Computational Bayesian Statistics

Download Bayesian Core: A Practical Approach to Computational Bayesian Statistics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387389792
Total Pages : 265 pages
Book Rating : 4.3/5 (873 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Core: A Practical Approach to Computational Bayesian Statistics by : Jean-Michel Marin

Download or read book Bayesian Core: A Practical Approach to Computational Bayesian Statistics written by Jean-Michel Marin and published by Springer Science & Business Media. This book was released on 2007-02-06 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Bayesian modeling book provides the perfect entry for gaining a practical understanding of Bayesian methodology. It focuses on standard statistical models and is backed up by discussed real datasets available from the book website.

Bayesian Models for Categorical Data

Download Bayesian Models for Categorical Data PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470092386
Total Pages : 446 pages
Book Rating : 4.4/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Models for Categorical Data by : Peter Congdon

Download or read book Bayesian Models for Categorical Data written by Peter Congdon and published by John Wiley & Sons. This book was released on 2005-12-13 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of Bayesian methods for the analysis of data has grown substantially in areas as diverse as applied statistics, psychology, economics and medical science. Bayesian Methods for Categorical Data sets out to demystify modern Bayesian methods, making them accessible to students and researchers alike. Emphasizing the use of statistical computing and applied data analysis, this book provides a comprehensive introduction to Bayesian methods of categorical outcomes. * Reviews recent Bayesian methodology for categorical outcomes (binary, count and multinomial data). * Considers missing data models techniques and non-standard models (ZIP and negative binomial). * Evaluates time series and spatio-temporal models for discrete data. * Features discussion of univariate and multivariate techniques. * Provides a set of downloadable worked examples with documented WinBUGS code, available from an ftp site. The author's previous 2 bestselling titles provided a comprehensive introduction to the theory and application of Bayesian models. Bayesian Models for Categorical Data continues to build upon this foundation by developing their application to categorical, or discrete data - one of the most common types of data available. The author's clear and logical approach makes the book accessible to a wide range of students and practitioners, including those dealing with categorical data in medicine, sociology, psychology and epidemiology.

Computer Age Statistical Inference

Download Computer Age Statistical Inference PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108107958
Total Pages : 496 pages
Book Rating : 4.1/5 (81 download)

DOWNLOAD NOW!


Book Synopsis Computer Age Statistical Inference by : Bradley Efron

Download or read book Computer Age Statistical Inference written by Bradley Efron and published by Cambridge University Press. This book was released on 2016-07-21 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.

Introduction to Small Area Estimation Techniques

Download Introduction to Small Area Estimation Techniques PDF Online Free

Author :
Publisher : Asian Development Bank
ISBN 13 : 9292622234
Total Pages : 152 pages
Book Rating : 4.2/5 (926 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Small Area Estimation Techniques by : Asian Development Bank

Download or read book Introduction to Small Area Estimation Techniques written by Asian Development Bank and published by Asian Development Bank. This book was released on 2020-05-01 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: This guide to small area estimation aims to help users compile more reliable granular or disaggregated data in cost-effective ways. It explains small area estimation techniques with examples of how the easily accessible R analytical platform can be used to implement them, particularly to estimate indicators on poverty, employment, and health outcomes. The guide is intended for staff of national statistics offices and for other development practitioners. It aims to help them to develop and implement targeted socioeconomic policies to ensure that the vulnerable segments of societies are not left behind, and to monitor progress toward the Sustainable Development Goals.