Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Bayesian Statistical Methods In Model Discrimination And Model Building
Download Bayesian Statistical Methods In Model Discrimination And Model Building full books in PDF, epub, and Kindle. Read online Bayesian Statistical Methods In Model Discrimination And Model Building ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Statistical Rethinking by : Richard McElreath
Download or read book Statistical Rethinking written by Richard McElreath and published by CRC Press. This book was released on 2018-01-03 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds readers’ knowledge of and confidence in statistical modeling. Reflecting the need for even minor programming in today’s model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work. The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation. By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling. Web Resource The book is accompanied by an R package (rethinking) that is available on the author’s website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.
Book Synopsis Bayesian Analysis for Population Ecology by : Ruth King
Download or read book Bayesian Analysis for Population Ecology written by Ruth King and published by CRC Press. This book was released on 2009-10-30 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emphasizing model choice and model averaging, this book presents up-to-date Bayesian methods for analyzing complex ecological data. It provides a basic introduction to Bayesian methods that assumes no prior knowledge. The book includes detailed descriptions of methods that deal with covariate data and covers techniques at the forefront of research, such as model discrimination and model averaging. Leaders in the statistical ecology field, the authors apply the theory to a wide range of actual case studies and illustrate the methods using WinBUGS and R. The computer programs and full details of the data sets are available on the book's website.
Book Synopsis Fundamentals of Clinical Data Science by : Pieter Kubben
Download or read book Fundamentals of Clinical Data Science written by Pieter Kubben and published by Springer. This book was released on 2018-12-21 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare. Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book’s promise is “no math, no code”and will explain the topics in a style that is optimized for a healthcare audience.
Book Synopsis Statistical Models by : David A. Freedman
Download or read book Statistical Models written by David A. Freedman and published by Cambridge University Press. This book was released on 2009-04-27 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: This lively and engaging book explains the things you have to know in order to read empirical papers in the social and health sciences, as well as the techniques you need to build statistical models of your own. The discussion in the book is organized around published studies, as are many of the exercises. Relevant journal articles are reprinted at the back of the book. Freedman makes a thorough appraisal of the statistical methods in these papers and in a variety of other examples. He illustrates the principles of modelling, and the pitfalls. The discussion shows you how to think about the critical issues - including the connection (or lack of it) between the statistical models and the real phenomena. The book is written for advanced undergraduates and beginning graduate students in statistics, as well as students and professionals in the social and health sciences.
Book Synopsis Statistical Methods of Model Building by : Helga Bunke
Download or read book Statistical Methods of Model Building written by Helga Bunke and published by . This book was released on 1986 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Case Studies in Bayesian Statistical Modelling and Analysis by : Clair L. Alston
Download or read book Case Studies in Bayesian Statistical Modelling and Analysis written by Clair L. Alston and published by John Wiley & Sons. This book was released on 2012-10-10 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides an accessible foundation to Bayesian analysis using real world models This book aims to present an introduction to Bayesian modelling and computation, by considering real case studies drawn from diverse fields spanning ecology, health, genetics and finance. Each chapter comprises a description of the problem, the corresponding model, the computational method, results and inferences as well as the issues that arise in the implementation of these approaches. Case Studies in Bayesian Statistical Modelling and Analysis: Illustrates how to do Bayesian analysis in a clear and concise manner using real-world problems. Each chapter focuses on a real-world problem and describes the way in which the problem may be analysed using Bayesian methods. Features approaches that can be used in a wide area of application, such as, health, the environment, genetics, information science, medicine, biology, industry and remote sensing. Case Studies in Bayesian Statistical Modelling and Analysis is aimed at statisticians, researchers and practitioners who have some expertise in statistical modelling and analysis, and some understanding of the basics of Bayesian statistics, but little experience in its application. Graduate students of statistics and biostatistics will also find this book beneficial.
Book Synopsis Kinetic Modeling of Reactions In Foods by : Martinus A.J.S. van Boekel
Download or read book Kinetic Modeling of Reactions In Foods written by Martinus A.J.S. van Boekel and published by CRC Press. This book was released on 2008-12-18 with total page 788 pages. Available in PDF, EPUB and Kindle. Book excerpt: The level of quality that food maintains as it travels down the production-to-consumption path is largely determined by the chemical, biochemical, physical, and microbiological changes that take place during its processing and storage. Authored by an internationally respected food quality expert, Kinetic Modeling of Reactions in Foods demonstrates
Book Synopsis 14th International Symposium on Process Systems Engineering by : Yoshiyuki Yamashita
Download or read book 14th International Symposium on Process Systems Engineering written by Yoshiyuki Yamashita and published by Elsevier. This book was released on 2022-06-24 with total page 2304 pages. Available in PDF, EPUB and Kindle. Book excerpt: 14th International Symposium on Process Systems Engineering, Volume 49 brings together the international community of researchers and engineers interested in computing-based methods in process engineering. The conference highlights the contributions of the PSE community towards the sustainability of modern society and is based on the 2021 event held in Tokyo, Japan, July 1-23, 2021. It contains contributions from academia and industry, establishing the core products of PSE, defining the new and changing scope of our results, and covering future challenges. Plenary and keynote lectures discuss real-world challenges (globalization, energy, environment and health) and contribute to discussions on the widening scope of PSE versus the consolidation of the core topics of PSE. - Highlights how the Process Systems Engineering community contributes to the sustainability of modern society - Establishes the core products of Process Systems Engineering - Defines the future challenges of Process Systems Engineering
Download or read book Bayes Rules! written by Alicia A. Johnson and published by CRC Press. This book was released on 2022-03-03 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for Bayes Rules!: An Introduction to Applied Bayesian Modeling “A thoughtful and entertaining book, and a great way to get started with Bayesian analysis.” Andrew Gelman, Columbia University “The examples are modern, and even many frequentist intro books ignore important topics (like the great p-value debate) that the authors address. The focus on simulation for understanding is excellent.” Amy Herring, Duke University “I sincerely believe that a generation of students will cite this book as inspiration for their use of – and love for – Bayesian statistics. The narrative holds the reader’s attention and flows naturally – almost conversationally. Put simply, this is perhaps the most engaging introductory statistics textbook I have ever read. [It] is a natural choice for an introductory undergraduate course in applied Bayesian statistics." Yue Jiang, Duke University “This is by far the best book I’ve seen on how to (and how to teach students to) do Bayesian modeling and understand the underlying mathematics and computation. The authors build intuition and scaffold ideas expertly, using interesting real case studies, insightful graphics, and clear explanations. The scope of this book is vast – from basic building blocks to hierarchical modeling, but the authors’ thoughtful organization allows the reader to navigate this journey smoothly. And impressively, by the end of the book, one can run sophisticated Bayesian models and actually understand the whys, whats, and hows.” Paul Roback, St. Olaf College “The authors provide a compelling, integrated, accessible, and non-religious introduction to statistical modeling using a Bayesian approach. They outline a principled approach that features computational implementations and model assessment with ethical implications interwoven throughout. Students and instructors will find the conceptual and computational exercises to be fresh and engaging.” Nicholas Horton, Amherst College An engaging, sophisticated, and fun introduction to the field of Bayesian statistics, Bayes Rules!: An Introduction to Applied Bayesian Modeling brings the power of modern Bayesian thinking, modeling, and computing to a broad audience. In particular, the book is an ideal resource for advanced undergraduate statistics students and practitioners with comparable experience. Bayes Rules! empowers readers to weave Bayesian approaches into their everyday practice. Discussions and applications are data driven. A natural progression from fundamental to multivariable, hierarchical models emphasizes a practical and generalizable model building process. The evaluation of these Bayesian models reflects the fact that a data analysis does not exist in a vacuum. Features • Utilizes data-driven examples and exercises. • Emphasizes the iterative model building and evaluation process. • Surveys an interconnected range of multivariable regression and classification models. • Presents fundamental Markov chain Monte Carlo simulation. • Integrates R code, including RStan modeling tools and the bayesrules package. • Encourages readers to tap into their intuition and learn by doing. • Provides a friendly and inclusive introduction to technical Bayesian concepts. • Supports Bayesian applications with foundational Bayesian theory.
Download or read book Geostatistics written by Jean-Paul Chilès and published by John Wiley & Sons. This book was released on 2009-09-25 with total page 718 pages. Available in PDF, EPUB and Kindle. Book excerpt: A novel, practical approach to modeling spatial uncertainty. This book deals with statistical models used to describe natural variables distributed in space or in time and space. It takes a practical, unified approach to geostatistics-integrating statistical data with physical equations and geological concepts while stressing the importance of an objective description based on empirical evidence. This unique approach facilitates realistic modeling that accounts for the complexity of natural phenomena and helps solve economic and development problems-in mining, oil exploration, environmental engineering, and other real-world situations involving spatial uncertainty. Up-to-date, comprehensive, and well-written, Geostatistics: Modeling Spatial Uncertainty explains both theory and applications, covers many useful topics, and offers a wealth of new insights for nonstatisticians and seasoned professionals alike. This volume: * Reviews the most up-to-date geostatistical methods and the types of problems they address. * Emphasizes the statistical methodologies employed in spatial estimation. * Presents simulation techniques and digital models of uncertainty. * Features more than 150 figures and many concrete examples throughout the text. * Includes extensive footnoting as well as a thorough bibliography. Geostatistics: Modeling Spatial Uncertainty is the only geostatistical book to address a broad audience in both industry and academia. An invaluable resource for geostatisticians, physicists, mining engineers, and earth science professionals such as petroleum geologists, geophysicists, and hydrogeologists, it is also an excellent supplementary text for graduate-level courses in related subjects.
Book Synopsis Statistical Methods of Model Building: Statistical inference in linear models by : Helga Bunke
Download or read book Statistical Methods of Model Building: Statistical inference in linear models written by Helga Bunke and published by . This book was released on 1986 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Records written by Barry C. Arnold and published by John Wiley & Sons. This book was released on 2011-09-20 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first and only comprehensive guide to modern record theory andits applications Although it is often thought of as a special topic in orderstatistics, records form a unique area, independent of the study ofsample extremes. Interest in records has increased steadily overthe years since Chandler formulated the theory of records in 1952.Numerous applications of them have been developed in such far-flungfields as meteorology, sports analysis, hydrology, and stock marketanalysis, to name just a few. And the literature on the subjectcurrently comprises papers and journal articles numbering in thehundreds. Which is why it is so nice to have this book devotedexclusively to this lively area of statistics. Written by an exceptionally well-qualified author team, Recordspresents a comprehensive treatment of record theory and itsapplications in a variety of disciplines. With the help of amultitude of fascinating examples, Professors Arnold, Balakrishnan,and Nagaraja help readers quickly master basic and advanced recordvalue concepts and procedures, from the classical record valuemodel to random and multivariate record models. The book follows arational textbook format, featuring witty and insightful chapterintroductions that help smooth transitions from one topic toanother and challenging chapter-end exercises, which expand on thematerial covered. An extensive bibliography and numerous referencesthroughout the text specify sources for further readings onrelevant topics. Records is a valuable professional resource forprobabilists and statisticians, in addition to appliedstatisticians, meteorologists, hydrologists, market analysts, andsports analysts. It also makes an excellent primary text forcourses in record theory and a supplement to order statisticscourses.
Book Synopsis Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan by : Franzi Korner-Nievergelt
Download or read book Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan written by Franzi Korner-Nievergelt and published by Academic Press. This book was released on 2015-04-04 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN examines the Bayesian and frequentist methods of conducting data analyses. The book provides the theoretical background in an easy-to-understand approach, encouraging readers to examine the processes that generated their data. Including discussions of model selection, model checking, and multi-model inference, the book also uses effect plots that allow a natural interpretation of data. Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN introduces Bayesian software, using R for the simple modes, and flexible Bayesian software (BUGS and Stan) for the more complicated ones. Guiding the ready from easy toward more complex (real) data analyses ina step-by-step manner, the book presents problems and solutions—including all R codes—that are most often applicable to other data and questions, making it an invaluable resource for analyzing a variety of data types. - Introduces Bayesian data analysis, allowing users to obtain uncertainty measurements easily for any derived parameter of interest - Written in a step-by-step approach that allows for eased understanding by non-statisticians - Includes a companion website containing R-code to help users conduct Bayesian data analyses on their own data - All example data as well as additional functions are provided in the R-package blmeco
Download or read book NBS Special Publication written by and published by . This book was released on 1970 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Information Series by : Alberta Research Council
Download or read book Information Series written by Alberta Research Council and published by . This book was released on 1973 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Handbook of Statistical Analysis and Data Mining Applications by : Ken Yale
Download or read book Handbook of Statistical Analysis and Data Mining Applications written by Ken Yale and published by Elsevier. This book was released on 2017-11-09 with total page 824 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications
Book Synopsis Prognosis Research in Healthcare by : Richard D. Riley
Download or read book Prognosis Research in Healthcare written by Richard D. Riley and published by Oxford University Press. This book was released on 2019-01-17 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: "What is going to happen to me?" Most patients ask this question during a clinical encounter with a health professional. As well as learning what problem they have (diagnosis) and what needs to be done about it (treatment), patients want to know about their future health and wellbeing (prognosis). Prognosis research can provide answers to this question and satisfy the need for individuals to understand the possible outcomes of their condition, with and without treatment. Central to modern medical practise, the topic of prognosis is the basis of decision making in healthcare and policy development. It translates basic and clinical science into practical care for patients and populations. Prognosis Research in Healthcare: Concepts, Methods and Impact provides a comprehensive overview of the field of prognosis and prognosis research and gives a global perspective on how prognosis research and prognostic information can improve the outcomes of healthcare. It details how to design, carry out, analyse and report prognosis studies, and how prognostic information can be the basis for tailored, personalised healthcare. In particular, the book discusses how information about the characteristics of people, their health, and environment can be used to predict an individual's future health. Prognosis Research in Healthcare: Concepts, Methods and Impact, addresses all types of prognosis research and provides a practical step-by-step guide to undertaking and interpreting prognosis research studies, ideal for medical students, health researchers, healthcare professionals and methodologists, as well as for guideline and policy makers in healthcare wishing to learn more about the field of prognosis.