Bayesian Real-Time System Identification

Download Bayesian Real-Time System Identification PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9819905931
Total Pages : 286 pages
Book Rating : 4.8/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Real-Time System Identification by : Ke Huang

Download or read book Bayesian Real-Time System Identification written by Ke Huang and published by Springer Nature. This book was released on 2023-03-20 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces some recent developments in Bayesian real-time system identification. It contains two different perspectives on data processing for system identification, namely centralized and distributed. A centralized Bayesian identification framework is presented to address challenging problems of real-time parameter estimation, which covers outlier detection, system, and noise parameters tracking. Besides, real-time Bayesian model class selection is introduced to tackle model misspecification problem. On the other hand, a distributed Bayesian identification framework is presented to handle asynchronous data and multiple outlier corrupted data. This book provides sufficient background to follow Bayesian methods for solving real-time system identification problems in civil and other engineering disciplines. The illustrative examples allow the readers to quickly understand the algorithms and associated applications. This book is intended for graduate students and researchers in civil and mechanical engineering. Practitioners can also find useful reference guide for solving engineering problems.

Trends and Progress in System Identification

Download Trends and Progress in System Identification PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 1483148661
Total Pages : 419 pages
Book Rating : 4.4/5 (831 download)

DOWNLOAD NOW!


Book Synopsis Trends and Progress in System Identification by : Pieter Eykhoff

Download or read book Trends and Progress in System Identification written by Pieter Eykhoff and published by Elsevier. This book was released on 2014-05-20 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: Trends and Progress in System Identification is a three-part book that focuses on model considerations, identification methods, and experimental conditions involved in system identification. Organized into 10 chapters, this book begins with a discussion of model method in system identification, citing four examples differing on the nature of the models involved, the nature of the fields, and their goals. Subsequent chapters describe the most important aspects of model theory; the ""classical"" methods and time series estimation; application of least squares and related techniques for the estimation of dynamic system parameters; the maximum likelihood and error prediction methods; and the modern development of statistical methods. Non-parametric approaches, identification of nonlinear systems by piecewise approximation, and the minimax identification are then explained. Other chapters explore the Bayesian approach to system identification; choice of input signals; and choice and effect of different feedback configurations in system identification. This book will be useful for control engineers, system scientists, biologists, and members of other disciplines dealing withdynamical relations.

Identification of Linear Systems

Download Identification of Linear Systems PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080912567
Total Pages : 353 pages
Book Rating : 4.0/5 (89 download)

DOWNLOAD NOW!


Book Synopsis Identification of Linear Systems by : J. Schoukens

Download or read book Identification of Linear Systems written by J. Schoukens and published by Elsevier. This book was released on 2014-06-28 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book concentrates on the problem of accurate modeling of linear systems. It presents a thorough description of a method of modeling a linear dynamic invariant system by its transfer function. The first two chapters provide a general introduction and review for those readers who are unfamiliar with identification theory so that they have a sufficient background knowledge for understanding the methods described later. The main body of the book looks at the basic method used by the authors to estimate the parameter of the transfer function, how it is possible to optimize the excitation signals. Further chapters extend the estimation method proposed. Applications are then discussed and the book concludes with practical guidelines which illustrate the method and offer some rules-of-thumb.

Nonlinear System Identification

Download Nonlinear System Identification PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118535553
Total Pages : 611 pages
Book Rating : 4.1/5 (185 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear System Identification by : Stephen A. Billings

Download or read book Nonlinear System Identification written by Stephen A. Billings and published by John Wiley & Sons. This book was released on 2013-07-29 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains describes a comprehensive framework for the identification and analysis of nonlinear dynamic systems in the time, frequency, and spatio-temporal domains. This book is written with an emphasis on making the algorithms accessible so that they can be applied and used in practice. Includes coverage of: The NARMAX (nonlinear autoregressive moving average with exogenous inputs) model The orthogonal least squares algorithm that allows models to be built term by term where the error reduction ratio reveals the percentage contribution of each model term Statistical and qualitative model validation methods that can be applied to any model class Generalised frequency response functions which provide significant insight into nonlinear behaviours A completely new class of filters that can move, split, spread, and focus energy The response spectrum map and the study of sub harmonic and severely nonlinear systems Algorithms that can track rapid time variation in both linear and nonlinear systems The important class of spatio-temporal systems that evolve over both space and time Many case study examples from modelling space weather, through identification of a model of the visual processing system of fruit flies, to tracking causality in EEG data are all included to demonstrate how easily the methods can be applied in practice and to show the insight that the algorithms reveal even for complex systems NARMAX algorithms provide a fundamentally different approach to nonlinear system identification and signal processing for nonlinear systems. NARMAX methods provide models that are transparent, which can easily be analysed, and which can be used to solve real problems. This book is intended for graduates, postgraduates and researchers in the sciences and engineering, and also for users from other fields who have collected data and who wish to identify models to help to understand the dynamics of their systems.

System Identification with Quantized Observations

Download System Identification with Quantized Observations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0817649565
Total Pages : 317 pages
Book Rating : 4.8/5 (176 download)

DOWNLOAD NOW!


Book Synopsis System Identification with Quantized Observations by : Le Yi Wang

Download or read book System Identification with Quantized Observations written by Le Yi Wang and published by Springer Science & Business Media. This book was released on 2010-05-18 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recently developed methodologies that utilize quantized information in system identification and explores their potential in extending control capabilities for systems with limited sensor information or networked systems. The results of these methodologies can be applied to signal processing and control design of communication and computer networks, sensor networks, mobile agents, coordinated data fusion, remote sensing, telemedicine, and other fields in which noise-corrupted quantized data need to be processed. System Identification with Quantized Observations is an excellent resource for graduate students, systems theorists, control engineers, applied mathematicians, as well as practitioners who use identification algorithms in their work.

Model Validation and Uncertainty Quantification, Volume 3

Download Model Validation and Uncertainty Quantification, Volume 3 PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030476383
Total Pages : 426 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Model Validation and Uncertainty Quantification, Volume 3 by : Zhu Mao

Download or read book Model Validation and Uncertainty Quantification, Volume 3 written by Zhu Mao and published by Springer Nature. This book was released on 2020-10-27 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model Validation and Uncertainty Quantification, Volume 3: Proceedings of the 38th IMAC, A Conference and Exposition on Structural Dynamics, 2020, the third volume of nine from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Model Validation and Uncertainty Quantification, including papers on: Uncertainty Quantification in Material Models Uncertainty Propagation in Structural Dynamics Practical Applications of MVUQ Advances in Model Validation & Uncertainty Quantification: Model Updating Model Validation & Uncertainty Quantification: Industrial Applications Controlling Uncertainty Uncertainty in Early Stage Design Modeling of Musical Instruments Overview of Model Validation and Uncertainty

System Identification

Download System Identification PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 148313945X
Total Pages : 93 pages
Book Rating : 4.4/5 (831 download)

DOWNLOAD NOW!


Book Synopsis System Identification by : R. Isermann

Download or read book System Identification written by R. Isermann and published by Elsevier. This book was released on 2014-05-23 with total page 93 pages. Available in PDF, EPUB and Kindle. Book excerpt: System Identification is a special section of the International Federation of Automatic Control (IFAC)-Journal Automatica that contains tutorial papers regarding the basic methods and procedures utilized for system identification. Topics include modeling and identification; step response and frequency response methods; correlation methods; least squares parameter estimation; and maximum likelihood and prediction error methods. After analyzing the basic ideas concerning the parameter estimation methods, the book elaborates on the asymptotic properties of these methods, and then investigates the application of the methods to particular model structures. The text then discusses the practical aspects of process identification, which includes the usual, general procedures for process identification; selection of input signals and sampling time; offline and on-line identification; comparison of parameter estimation methods; data filtering; model order testing; and model verification. Computer program packages are also discussed. This compilation of tutorial papers aims to introduce the newcomers and non-specialists in this field to some of the basic methods and procedures used for system identification.

Principles of System Identification

Download Principles of System Identification PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 143989602X
Total Pages : 908 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Principles of System Identification by : Arun K. Tangirala

Download or read book Principles of System Identification written by Arun K. Tangirala and published by CRC Press. This book was released on 2018-10-08 with total page 908 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master Techniques and Successfully Build Models Using a Single Resource Vital to all data-driven or measurement-based process operations, system identification is an interface that is based on observational science, and centers on developing mathematical models from observed data. Principles of System Identification: Theory and Practice is an introductory-level book that presents the basic foundations and underlying methods relevant to system identification. The overall scope of the book focuses on system identification with an emphasis on practice, and concentrates most specifically on discrete-time linear system identification. Useful for Both Theory and Practice The book presents the foundational pillars of identification, namely, the theory of discrete-time LTI systems, the basics of signal processing, the theory of random processes, and estimation theory. It explains the core theoretical concepts of building (linear) dynamic models from experimental data, as well as the experimental and practical aspects of identification. The author offers glimpses of modern developments in this area, and provides numerical and simulation-based examples, case studies, end-of-chapter problems, and other ample references to code for illustration and training. Comprising 26 chapters, and ideal for coursework and self-study, this extensive text: Provides the essential concepts of identification Lays down the foundations of mathematical descriptions of systems, random processes, and estimation in the context of identification Discusses the theory pertaining to non-parametric and parametric models for deterministic-plus-stochastic LTI systems in detail Demonstrates the concepts and methods of identification on different case-studies Presents a gradual development of state-space identification and grey-box modeling Offers an overview of advanced topics of identification namely the linear time-varying (LTV), non-linear, and closed-loop identification Discusses a multivariable approach to identification using the iterative principal component analysis Embeds MATLAB® codes for illustrated examples in the text at the respective points Principles of System Identification: Theory and Practice presents a formal base in LTI deterministic and stochastic systems modeling and estimation theory; it is a one-stop reference for introductory to moderately advanced courses on system identification, as well as introductory courses on stochastic signal processing or time-series analysis.The MATLAB scripts and SIMULINK models used as examples and case studies in the book are also available on the author's website: http://arunkt.wix.com/homepage#!textbook/c397

Data Analysis

Download Data Analysis PDF Online Free

Author :
Publisher : OUP Oxford
ISBN 13 : 0191546704
Total Pages : 259 pages
Book Rating : 4.1/5 (915 download)

DOWNLOAD NOW!


Book Synopsis Data Analysis by : Devinderjit Sivia

Download or read book Data Analysis written by Devinderjit Sivia and published by OUP Oxford. This book was released on 2006-06-02 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the strengths of this book is the author's ability to motivate the use of Bayesian methods through simple yet effective examples. - Katie St. Clair MAA Reviews.

System Identification

Download System Identification PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0857295225
Total Pages : 334 pages
Book Rating : 4.8/5 (572 download)

DOWNLOAD NOW!


Book Synopsis System Identification by : Karel J. Keesman

Download or read book System Identification written by Karel J. Keesman and published by Springer Science & Business Media. This book was released on 2011-05-16 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: System Identification shows the student reader how to approach the system identification problem in a systematic fashion. The process is divided into three basic steps: experimental design and data collection; model structure selection and parameter estimation; and model validation, each of which is the subject of one or more parts of the text. Following an introduction on system theory, particularly in relation to model representation and model properties, the book contains four parts covering: • data-based identification – non-parametric methods for use when prior system knowledge is very limited; • time-invariant identification for systems with constant parameters; • time-varying systems identification, primarily with recursive estimation techniques; and • model validation methods. A fifth part, composed of appendices, covers the various aspects of the underlying mathematics needed to begin using the text. The book uses essentially semi-physical or gray-box modeling methods although data-based, transfer-function system descriptions are also introduced. The approach is problem-based rather than rigorously mathematical. The use of finite input–output data is demonstrated for frequency- and time-domain identification in static, dynamic, linear, nonlinear, time-invariant and time-varying systems. Simple examples are used to show readers how to perform and emulate the identification steps involved in various control design methods with more complex illustrations derived from real physical, chemical and biological applications being used to demonstrate the practical applicability of the methods described. End-of-chapter exercises (for which a downloadable instructors’ Solutions Manual is available from fill in URL here) will both help students to assimilate what they have learned and make the book suitable for self-tuition by practitioners looking to brush up on modern techniques. Graduate and final-year undergraduate students will find this text to be a practical and realistic course in system identification that can be used for assessing the processes of a variety of engineering disciplines. System Identification will help academic instructors teaching control-related to give their students a good understanding of identification methods that can be used in the real world without the encumbrance of undue mathematical detail.

Bayesian Inference of State Space Models

Download Bayesian Inference of State Space Models PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 303076124X
Total Pages : 503 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Inference of State Space Models by : Kostas Triantafyllopoulos

Download or read book Bayesian Inference of State Space Models written by Kostas Triantafyllopoulos and published by Springer Nature. This book was released on 2021-11-12 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Inference of State Space Models: Kalman Filtering and Beyond offers a comprehensive introduction to Bayesian estimation and forecasting for state space models. The celebrated Kalman filter, with its numerous extensions, takes centre stage in the book. Univariate and multivariate models, linear Gaussian, non-linear and non-Gaussian models are discussed with applications to signal processing, environmetrics, economics and systems engineering. Over the past years there has been a growing literature on Bayesian inference of state space models, focusing on multivariate models as well as on non-linear and non-Gaussian models. The availability of time series data in many fields of science and industry on the one hand, and the development of low-cost computational capabilities on the other, have resulted in a wealth of statistical methods aimed at parameter estimation and forecasting. This book brings together many of these methods, presenting an accessible and comprehensive introduction to state space models. A number of data sets from different disciplines are used to illustrate the methods and show how they are applied in practice. The R package BTSA, created for the book, includes many of the algorithms and examples presented. The book is essentially self-contained and includes a chapter summarising the prerequisites in undergraduate linear algebra, probability and statistics. An up-to-date and complete account of state space methods, illustrated by real-life data sets and R code, this textbook will appeal to a wide range of students and scientists, notably in the disciplines of statistics, systems engineering, signal processing, data science, finance and econometrics. With numerous exercises in each chapter, and prerequisite knowledge conveniently recalled, it is suitable for upper undergraduate and graduate courses.

Bayesian Methods for Structural Dynamics and Civil Engineering

Download Bayesian Methods for Structural Dynamics and Civil Engineering PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 9780470824559
Total Pages : 320 pages
Book Rating : 4.8/5 (245 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Methods for Structural Dynamics and Civil Engineering by : Ka-Veng Yuen

Download or read book Bayesian Methods for Structural Dynamics and Civil Engineering written by Ka-Veng Yuen and published by John Wiley & Sons. This book was released on 2010-02-22 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian methods are a powerful tool in many areas of science and engineering, especially statistical physics, medical sciences, electrical engineering, and information sciences. They are also ideal for civil engineering applications, given the numerous types of modeling and parametric uncertainty in civil engineering problems. For example, earthquake ground motion cannot be predetermined at the structural design stage. Complete wind pressure profiles are difficult to measure under operating conditions. Material properties can be difficult to determine to a very precise level – especially concrete, rock, and soil. For air quality prediction, it is difficult to measure the hourly/daily pollutants generated by cars and factories within the area of concern. It is also difficult to obtain the updated air quality information of the surrounding cities. Furthermore, the meteorological conditions of the day for prediction are also uncertain. These are just some of the civil engineering examples to which Bayesian probabilistic methods are applicable. Familiarizes readers with the latest developments in the field Includes identification problems for both dynamic and static systems Addresses challenging civil engineering problems such as modal/model updating Presents methods applicable to mechanical and aerospace engineering Gives engineers and engineering students a concrete sense of implementation Covers real-world case studies in civil engineering and beyond, such as: structural health monitoring seismic attenuation finite-element model updating hydraulic jump artificial neural network for damage detection air quality prediction Includes other insightful daily-life examples Companion website with MATLAB code downloads for independent practice Written by a leading expert in the use of Bayesian methods for civil engineering problems This book is ideal for researchers and graduate students in civil and mechanical engineering or applied probability and statistics. Practicing engineers interested in the application of statistical methods to solve engineering problems will also find this to be a valuable text. MATLAB code and lecture materials for instructors available at http://www.wiley.com/go/yuen

Online Damage Detection in Structural Systems

Download Online Damage Detection in Structural Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3319025597
Total Pages : 141 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Online Damage Detection in Structural Systems by : Saeed Eftekhar Azam

Download or read book Online Damage Detection in Structural Systems written by Saeed Eftekhar Azam and published by Springer Science & Business Media. This book was released on 2014-01-21 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph assesses in depth the application of recursive Bayesian filters in structural health monitoring. Although the methods and algorithms used here are well established in the field of automatic control, their application in the realm of civil engineering has to date been limited. The monograph is therefore intended as a reference for structural and civil engineers who wish to conduct research in this field. To this end, the main notions underlying the families of Kalman and particle filters are scrutinized through explanations within the text and numerous numerical examples. The main limitations to their application in monitoring of high-rise buildings are discussed and a remedy based on a synergy of reduced order modeling (based on proper orthogonal decomposition) and Bayesian estimation is proposed. The performance and effectiveness of the proposed algorithm is demonstrated via pseudo-experimental evaluations.

Bayesian Filtering and Smoothing

Download Bayesian Filtering and Smoothing PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 110703065X
Total Pages : 255 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Filtering and Smoothing by : Simo Särkkä

Download or read book Bayesian Filtering and Smoothing written by Simo Särkkä and published by Cambridge University Press. This book was released on 2013-09-05 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.

Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures

Download Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1315884887
Total Pages : 1112 pages
Book Rating : 4.3/5 (158 download)

DOWNLOAD NOW!


Book Synopsis Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures by : George Deodatis

Download or read book Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures written by George Deodatis and published by CRC Press. This book was released on 2014-02-10 with total page 1112 pages. Available in PDF, EPUB and Kindle. Book excerpt: Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures contains the plenary lectures and papers presented at the 11th International Conference on STRUCTURAL SAFETY AND RELIABILITY (ICOSSAR2013, New York, NY, USA, 16-20 June 2013), and covers major aspects of safety, reliability, risk and life-cycle performance of str

Model Validation and Uncertainty Quantification, Volume 3

Download Model Validation and Uncertainty Quantification, Volume 3 PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319747932
Total Pages : 303 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Model Validation and Uncertainty Quantification, Volume 3 by : Robert Barthorpe

Download or read book Model Validation and Uncertainty Quantification, Volume 3 written by Robert Barthorpe and published by Springer. This book was released on 2018-07-30 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model Validation and Uncertainty Quantification, Volume 3: Proceedings of the 36th IMAC, A Conference and Exposition on Structural Dynamics, 2018, the third volume of nine from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Model Validation and Uncertainty Quantification, including papers on: Uncertainty Quantification in Material Models Uncertainty Propagation in Structural Dynamics Practical Applications of MVUQ Advances in Model Validation & Uncertainty Quantification: Model Updating Model Validation & Uncertainty Quantification: Industrial Applications Controlling Uncertainty Uncertainty in Early Stage Design Modeling of Musical Instruments Overview of Model Validation and Uncertainty

Recent Advances in Structural Engineering, Volume 1

Download Recent Advances in Structural Engineering, Volume 1 PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811303622
Total Pages : 1137 pages
Book Rating : 4.8/5 (113 download)

DOWNLOAD NOW!


Book Synopsis Recent Advances in Structural Engineering, Volume 1 by : A. Rama Mohan Rao

Download or read book Recent Advances in Structural Engineering, Volume 1 written by A. Rama Mohan Rao and published by Springer. This book was released on 2018-08-01 with total page 1137 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of select papers presented at the Tenth Structural Engineering Convention 2016 (SEC-2016). It comprises plenary, invited, and contributory papers covering numerous applications from a wide spectrum of areas related to structural engineering. It presents contributions by academics, researchers, and practicing structural engineers addressing analysis and design of concrete and steel structures, computational structural mechanics, new building materials for sustainable construction, mitigation of structures against natural hazards, structural health monitoring, wind and earthquake engineering, vibration control and smart structures, condition assessment and performance evaluation, repair, rehabilitation and retrofit of structures. Also covering advances in construction techniques/ practices, behavior of structures under blast/impact loading, fatigue and fracture, composite materials and structures, and structures for non-conventional energy (wind and solar), it will serve as a valuable resource for researchers, students and practicing engineers alike.