Bayesian Reinforcement Learning

Download Bayesian Reinforcement Learning PDF Online Free

Author :
Publisher :
ISBN 13 : 9781680830880
Total Pages : 146 pages
Book Rating : 4.8/5 (38 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Reinforcement Learning by : Mohammad Ghavamzadeh

Download or read book Bayesian Reinforcement Learning written by Mohammad Ghavamzadeh and published by . This book was released on 2015-11-18 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian methods for machine learning have been widely investigated, yielding principled methods for incorporating prior information into inference algorithms. This monograph provides the reader with an in-depth review of the role of Bayesian methods for the reinforcement learning (RL) paradigm. The major incentives for incorporating Bayesian reasoning in RL are that it provides an elegant approach to action-selection (exploration/exploitation) as a function of the uncertainty in learning, and it provides a machinery to incorporate prior knowledge into the algorithms. Bayesian Reinforcement Learning: A Survey first discusses models and methods for Bayesian inference in the simple single-step Bandit model. It then reviews the extensive recent literature on Bayesian methods for model-based RL, where prior information can be expressed on the parameters of the Markov model. It also presents Bayesian methods for model-free RL, where priors are expressed over the value function or policy class. Bayesian Reinforcement Learning: A Survey is a comprehensive reference for students and researchers with an interest in Bayesian RL algorithms and their theoretical and empirical properties.

Artificial Neural Networks and Machine Learning -- ICANN 2014

Download Artificial Neural Networks and Machine Learning -- ICANN 2014 PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319111795
Total Pages : 874 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Artificial Neural Networks and Machine Learning -- ICANN 2014 by : Stefan Wermter

Download or read book Artificial Neural Networks and Machine Learning -- ICANN 2014 written by Stefan Wermter and published by Springer. This book was released on 2014-08-18 with total page 874 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book constitutes the proceedings of the 24th International Conference on Artificial Neural Networks, ICANN 2014, held in Hamburg, Germany, in September 2014. The 107 papers included in the proceedings were carefully reviewed and selected from 173 submissions. The focus of the papers is on following topics: recurrent networks; competitive learning and self-organisation; clustering and classification; trees and graphs; human-machine interaction; deep networks; theory; reinforcement learning and action; vision; supervised learning; dynamical models and time series; neuroscience; and applications.

Artificial Intelligence Applications and Innovations

Download Artificial Intelligence Applications and Innovations PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3662446545
Total Pages : 656 pages
Book Rating : 4.6/5 (624 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence Applications and Innovations by : Lazaros Iliadis

Download or read book Artificial Intelligence Applications and Innovations written by Lazaros Iliadis and published by Springer. This book was released on 2014-09-15 with total page 656 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 10th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations, AIAI 2014, held in Rhodes, Greece, in September 2014. The 33 revised full papers and 29 short papers presented were carefully reviewed and selected from numerous submissions. They are organized in the following topical sections: learning-ensemble learning; social media and mobile applications of AI; hybrid-changing environments; agent (AGE); classification pattern recognition; genetic algorithms; image and video processing; feature extraction; environmental AI; simulations and fuzzy modeling; and data mining forecasting.

Reinforcement Learning

Download Reinforcement Learning PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642276458
Total Pages : 653 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Reinforcement Learning by : Marco Wiering

Download or read book Reinforcement Learning written by Marco Wiering and published by Springer Science & Business Media. This book was released on 2012-03-05 with total page 653 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reinforcement learning encompasses both a science of adaptive behavior of rational beings in uncertain environments and a computational methodology for finding optimal behaviors for challenging problems in control, optimization and adaptive behavior of intelligent agents. As a field, reinforcement learning has progressed tremendously in the past decade. The main goal of this book is to present an up-to-date series of survey articles on the main contemporary sub-fields of reinforcement learning. This includes surveys on partially observable environments, hierarchical task decompositions, relational knowledge representation and predictive state representations. Furthermore, topics such as transfer, evolutionary methods and continuous spaces in reinforcement learning are surveyed. In addition, several chapters review reinforcement learning methods in robotics, in games, and in computational neuroscience. In total seventeen different subfields are presented by mostly young experts in those areas, and together they truly represent a state-of-the-art of current reinforcement learning research. Marco Wiering works at the artificial intelligence department of the University of Groningen in the Netherlands. He has published extensively on various reinforcement learning topics. Martijn van Otterlo works in the cognitive artificial intelligence group at the Radboud University Nijmegen in The Netherlands. He has mainly focused on expressive knowledge representation in reinforcement learning settings.

Bayesian Models of Cognition

Download Bayesian Models of Cognition PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262049414
Total Pages : 649 pages
Book Rating : 4.2/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Models of Cognition by : Thomas L. Griffiths

Download or read book Bayesian Models of Cognition written by Thomas L. Griffiths and published by MIT Press. This book was released on 2024-11-12 with total page 649 pages. Available in PDF, EPUB and Kindle. Book excerpt: The definitive introduction to Bayesian cognitive science, written by pioneers of the field. How does human intelligence work, in engineering terms? How do our minds get so much from so little? Bayesian models of cognition provide a powerful framework for answering these questions by reverse-engineering the mind. This textbook offers an authoritative introduction to Bayesian cognitive science and a unifying theoretical perspective on how the mind works. Part I provides an introduction to the key mathematical ideas and illustrations with examples from the psychological literature, including detailed derivations of specific models and references that can be used to learn more about the underlying principles. Part II details more advanced topics and their applications before engaging with critiques of the reverse-engineering approach. Written by experts at the forefront of new research, this comprehensive text brings the fields of cognitive science and artificial intelligence back together and establishes a firmly grounded mathematical and computational foundation for the understanding of human intelligence. The only textbook comprehensively introducing the Bayesian approach to cognition Written by pioneers in the field Offers cutting-edge coverage of Bayesian cognitive science's research frontiers Suitable for advanced undergraduate and graduate students and researchers across the sciences with an interest in the mind, brain, and intelligence Features short tutorials and case studies of specific Bayesian models

Bayesian Nonparametrics

Download Bayesian Nonparametrics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387226540
Total Pages : 311 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Nonparametrics by : J.K. Ghosh

Download or read book Bayesian Nonparametrics written by J.K. Ghosh and published by Springer Science & Business Media. This book was released on 2006-05-11 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first systematic treatment of Bayesian nonparametric methods and the theory behind them. It will also appeal to statisticians in general. The book is primarily aimed at graduate students and can be used as the text for a graduate course in Bayesian non-parametrics.

Efficient Reinforcement Learning Using Gaussian Processes

Download Efficient Reinforcement Learning Using Gaussian Processes PDF Online Free

Author :
Publisher : KIT Scientific Publishing
ISBN 13 : 3866445695
Total Pages : 226 pages
Book Rating : 4.8/5 (664 download)

DOWNLOAD NOW!


Book Synopsis Efficient Reinforcement Learning Using Gaussian Processes by : Marc Peter Deisenroth

Download or read book Efficient Reinforcement Learning Using Gaussian Processes written by Marc Peter Deisenroth and published by KIT Scientific Publishing. This book was released on 2010 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines Gaussian processes in both model-based reinforcement learning (RL) and inference in nonlinear dynamic systems.First, we introduce PILCO, a fully Bayesian approach for efficient RL in continuous-valued state and action spaces when no expert knowledge is available. PILCO takes model uncertainties consistently into account during long-term planning to reduce model bias. Second, we propose principled algorithms for robust filtering and smoothing in GP dynamic systems.

Building Dialogue POMDPs from Expert Dialogues

Download Building Dialogue POMDPs from Expert Dialogues PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319262009
Total Pages : 123 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Building Dialogue POMDPs from Expert Dialogues by : Hamidreza Chinaei

Download or read book Building Dialogue POMDPs from Expert Dialogues written by Hamidreza Chinaei and published by Springer. This book was released on 2016-02-08 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the Partially Observable Markov Decision Process (POMDP) framework applied in dialogue systems. It presents POMDP as a formal framework to represent uncertainty explicitly while supporting automated policy solving. The authors propose and implement an end-to-end learning approach for dialogue POMDP model components. Starting from scratch, they present the state, the transition model, the observation model and then finally the reward model from unannotated and noisy dialogues. These altogether form a significant set of contributions that can potentially inspire substantial further work. This concise manuscript is written in a simple language, full of illustrative examples, figures, and tables.

Reinforcement Learning, second edition

Download Reinforcement Learning, second edition PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262352702
Total Pages : 549 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Reinforcement Learning, second edition by : Richard S. Sutton

Download or read book Reinforcement Learning, second edition written by Richard S. Sutton and published by MIT Press. This book was released on 2018-11-13 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.

An Introduction to Deep Reinforcement Learning

Download An Introduction to Deep Reinforcement Learning PDF Online Free

Author :
Publisher : Foundations and Trends (R) in Machine Learning
ISBN 13 : 9781680835380
Total Pages : 156 pages
Book Rating : 4.8/5 (353 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Deep Reinforcement Learning by : Vincent Francois-Lavet

Download or read book An Introduction to Deep Reinforcement Learning written by Vincent Francois-Lavet and published by Foundations and Trends (R) in Machine Learning. This book was released on 2018-12-20 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep reinforcement learning is the combination of reinforcement learning (RL) and deep learning. This field of research has recently been able to solve a wide range of complex decision-making tasks that were previously out of reach for a machine. Deep RL opens up many new applications in domains such as healthcare, robotics, smart grids, finance, and many more. This book provides the reader with a starting point for understanding the topic. Although written at a research level it provides a comprehensive and accessible introduction to deep reinforcement learning models, algorithms and techniques. Particular focus is on the aspects related to generalization and how deep RL can be used for practical applications. Written by recognized experts, this book is an important introduction to Deep Reinforcement Learning for practitioners, researchers and students alike.

The Oxford Handbook of Causal Reasoning

Download The Oxford Handbook of Causal Reasoning PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 0199399573
Total Pages : 769 pages
Book Rating : 4.1/5 (993 download)

DOWNLOAD NOW!


Book Synopsis The Oxford Handbook of Causal Reasoning by : Michael Waldmann

Download or read book The Oxford Handbook of Causal Reasoning written by Michael Waldmann and published by Oxford University Press. This book was released on 2017-03-30 with total page 769 pages. Available in PDF, EPUB and Kindle. Book excerpt: Causal reasoning is one of our most central cognitive competencies, enabling us to adapt to our world. Causal knowledge allows us to predict future events, or diagnose the causes of observed facts. We plan actions and solve problems using knowledge about cause-effect relations. Although causal reasoning is a component of most of our cognitive functions, it has been neglected in cognitive psychology for many decades. The Oxford Handbook of Causal Reasoning offers a state-of-the-art review of the growing field, and its contribution to the world of cognitive science. The Handbook begins with an introduction of competing theories of causal learning and reasoning. In the next section, it presents research about basic cognitive functions involved in causal cognition, such as perception, categorization, argumentation, decision-making, and induction. The following section examines research on domains that embody causal relations, including intuitive physics, legal and moral reasoning, psychopathology, language, social cognition, and the roles of space and time. The final section presents research from neighboring fields that study developmental, phylogenetic, and cultural differences in causal cognition. The chapters, each written by renowned researchers in their field, fill in the gaps of many cognitive psychology textbooks, emphasizing the crucial role of causal structures in our everyday lives. This Handbook is an essential read for students and researchers of the cognitive sciences, including cognitive, developmental, social, comparative, and cross-cultural psychology; philosophy; methodology; statistics; artificial intelligence; and machine learning.

Advances in Neural Information Processing Systems 19

Download Advances in Neural Information Processing Systems 19 PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262195682
Total Pages : 1668 pages
Book Rating : 4.2/5 (621 download)

DOWNLOAD NOW!


Book Synopsis Advances in Neural Information Processing Systems 19 by : Bernhard Schölkopf

Download or read book Advances in Neural Information Processing Systems 19 written by Bernhard Schölkopf and published by MIT Press. This book was released on 2007 with total page 1668 pages. Available in PDF, EPUB and Kindle. Book excerpt: The annual Neural Information Processing Systems (NIPS) conference is the flagship meeting on neural computation and machine learning. This volume contains the papers presented at the December 2006 meeting, held in Vancouver.

Lifelong Machine Learning, Second Edition

Download Lifelong Machine Learning, Second Edition PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031015819
Total Pages : 187 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Lifelong Machine Learning, Second Edition by : Zhiyuan Sun

Download or read book Lifelong Machine Learning, Second Edition written by Zhiyuan Sun and published by Springer Nature. This book was released on 2022-06-01 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lifelong Machine Learning, Second Edition is an introduction to an advanced machine learning paradigm that continuously learns by accumulating past knowledge that it then uses in future learning and problem solving. In contrast, the current dominant machine learning paradigm learns in isolation: given a training dataset, it runs a machine learning algorithm on the dataset to produce a model that is then used in its intended application. It makes no attempt to retain the learned knowledge and use it in subsequent learning. Unlike this isolated system, humans learn effectively with only a few examples precisely because our learning is very knowledge-driven: the knowledge learned in the past helps us learn new things with little data or effort. Lifelong learning aims to emulate this capability, because without it, an AI system cannot be considered truly intelligent. Research in lifelong learning has developed significantly in the relatively short time since the first edition of this book was published. The purpose of this second edition is to expand the definition of lifelong learning, update the content of several chapters, and add a new chapter about continual learning in deep neural networks—which has been actively researched over the past two or three years. A few chapters have also been reorganized to make each of them more coherent for the reader. Moreover, the authors want to propose a unified framework for the research area. Currently, there are several research topics in machine learning that are closely related to lifelong learning—most notably, multi-task learning, transfer learning, and meta-learning—because they also employ the idea of knowledge sharing and transfer. This book brings all these topics under one roof and discusses their similarities and differences. Its goal is to introduce this emerging machine learning paradigm and present a comprehensive survey and review of the important research results and latest ideas in the area. This book is thus suitable for students, researchers, and practitioners who are interested in machine learning, data mining, natural language processing, or pattern recognition. Lecturers can readily use the book for courses in any of these related fields.

An Algorithmic Perspective on Imitation Learning

Download An Algorithmic Perspective on Imitation Learning PDF Online Free

Author :
Publisher :
ISBN 13 : 9781680834109
Total Pages : 194 pages
Book Rating : 4.8/5 (341 download)

DOWNLOAD NOW!


Book Synopsis An Algorithmic Perspective on Imitation Learning by : Takayuki Osa

Download or read book An Algorithmic Perspective on Imitation Learning written by Takayuki Osa and published by . This book was released on 2018-03-27 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: Familiarizes machine learning experts with imitation learning, statistical supervised learning theory, and reinforcement learning. It also roboticists and experts in applied artificial intelligence with a broader appreciation for the frameworks and tools available for imitation learning.

Introduction to Machine Learning

Download Introduction to Machine Learning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262028182
Total Pages : 639 pages
Book Rating : 4.2/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Machine Learning by : Ethem Alpaydin

Download or read book Introduction to Machine Learning written by Ethem Alpaydin and published by MIT Press. This book was released on 2014-08-22 with total page 639 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction -- Supervised learning -- Bayesian decision theory -- Parametric methods -- Multivariate methods -- Dimensionality reduction -- Clustering -- Nonparametric methods -- Decision trees -- Linear discrimination -- Multilayer perceptrons -- Local models -- Kernel machines -- Graphical models -- Brief contents -- Hidden markov models -- Bayesian estimation -- Combining multiple learners -- Reinforcement learning -- Design and analysis of machine learning experiments.

Reinforcement Learning and Dynamic Programming Using Function Approximators

Download Reinforcement Learning and Dynamic Programming Using Function Approximators PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439821097
Total Pages : 280 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Reinforcement Learning and Dynamic Programming Using Function Approximators by : Lucian Busoniu

Download or read book Reinforcement Learning and Dynamic Programming Using Function Approximators written by Lucian Busoniu and published by CRC Press. This book was released on 2017-07-28 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: From household appliances to applications in robotics, engineered systems involving complex dynamics can only be as effective as the algorithms that control them. While Dynamic Programming (DP) has provided researchers with a way to optimally solve decision and control problems involving complex dynamic systems, its practical value was limited by algorithms that lacked the capacity to scale up to realistic problems. However, in recent years, dramatic developments in Reinforcement Learning (RL), the model-free counterpart of DP, changed our understanding of what is possible. Those developments led to the creation of reliable methods that can be applied even when a mathematical model of the system is unavailable, allowing researchers to solve challenging control problems in engineering, as well as in a variety of other disciplines, including economics, medicine, and artificial intelligence. Reinforcement Learning and Dynamic Programming Using Function Approximators provides a comprehensive and unparalleled exploration of the field of RL and DP. With a focus on continuous-variable problems, this seminal text details essential developments that have substantially altered the field over the past decade. In its pages, pioneering experts provide a concise introduction to classical RL and DP, followed by an extensive presentation of the state-of-the-art and novel methods in RL and DP with approximation. Combining algorithm development with theoretical guarantees, they elaborate on their work with illustrative examples and insightful comparisons. Three individual chapters are dedicated to representative algorithms from each of the major classes of techniques: value iteration, policy iteration, and policy search. The features and performance of these algorithms are highlighted in extensive experimental studies on a range of control applications. The recent development of applications involving complex systems has led to a surge of interest in RL and DP methods and the subsequent need for a quality resource on the subject. For graduate students and others new to the field, this book offers a thorough introduction to both the basics and emerging methods. And for those researchers and practitioners working in the fields of optimal and adaptive control, machine learning, artificial intelligence, and operations research, this resource offers a combination of practical algorithms, theoretical analysis, and comprehensive examples that they will be able to adapt and apply to their own work. Access the authors' website at www.dcsc.tudelft.nl/rlbook/ for additional material, including computer code used in the studies and information concerning new developments.

Optimization for Machine Learning

Download Optimization for Machine Learning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 026201646X
Total Pages : 509 pages
Book Rating : 4.2/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Optimization for Machine Learning by : Suvrit Sra

Download or read book Optimization for Machine Learning written by Suvrit Sra and published by MIT Press. This book was released on 2012 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date account of the interplay between optimization and machine learning, accessible to students and researchers in both communities. The interplay between optimization and machine learning is one of the most important developments in modern computational science. Optimization formulations and methods are proving to be vital in designing algorithms to extract essential knowledge from huge volumes of data. Machine learning, however, is not simply a consumer of optimization technology but a rapidly evolving field that is itself generating new optimization ideas. This book captures the state of the art of the interaction between optimization and machine learning in a way that is accessible to researchers in both fields. Optimization approaches have enjoyed prominence in machine learning because of their wide applicability and attractive theoretical properties. The increasing complexity, size, and variety of today's machine learning models call for the reassessment of existing assumptions. This book starts the process of reassessment. It describes the resurgence in novel contexts of established frameworks such as first-order methods, stochastic approximations, convex relaxations, interior-point methods, and proximal methods. It also devotes attention to newer themes such as regularized optimization, robust optimization, gradient and subgradient methods, splitting techniques, and second-order methods. Many of these techniques draw inspiration from other fields, including operations research, theoretical computer science, and subfields of optimization. The book will enrich the ongoing cross-fertilization between the machine learning community and these other fields, and within the broader optimization community.