Finite Mixture and Markov Switching Models

Download Finite Mixture and Markov Switching Models PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387357688
Total Pages : 506 pages
Book Rating : 4.3/5 (873 download)

DOWNLOAD NOW!


Book Synopsis Finite Mixture and Markov Switching Models by : Sylvia Frühwirth-Schnatter

Download or read book Finite Mixture and Markov Switching Models written by Sylvia Frühwirth-Schnatter and published by Springer Science & Business Media. This book was released on 2006-11-24 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: The past decade has seen powerful new computational tools for modeling which combine a Bayesian approach with recent Monte simulation techniques based on Markov chains. This book is the first to offer a systematic presentation of the Bayesian perspective of finite mixture modelling. The book is designed to show finite mixture and Markov switching models are formulated, what structures they imply on the data, their potential uses, and how they are estimated. Presenting its concepts informally without sacrificing mathematical correctness, it will serve a wide readership including statisticians as well as biologists, economists, engineers, financial and market researchers.

Statistical and Inductive Inference by Minimum Message Length

Download Statistical and Inductive Inference by Minimum Message Length PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780387237954
Total Pages : 456 pages
Book Rating : 4.2/5 (379 download)

DOWNLOAD NOW!


Book Synopsis Statistical and Inductive Inference by Minimum Message Length by : C.S. Wallace

Download or read book Statistical and Inductive Inference by Minimum Message Length written by C.S. Wallace and published by Springer Science & Business Media. This book was released on 2005-05-26 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Minimum Message Length (MML) Principle is an information-theoretic approach to induction, hypothesis testing, model selection, and statistical inference. MML, which provides a formal specification for the implementation of Occam's Razor, asserts that the ‘best’ explanation of observed data is the shortest. Further, an explanation is acceptable (i.e. the induction is justified) only if the explanation is shorter than the original data. This book gives a sound introduction to the Minimum Message Length Principle and its applications, provides the theoretical arguments for the adoption of the principle, and shows the development of certain approximations that assist its practical application. MML appears also to provide both a normative and a descriptive basis for inductive reasoning generally, and scientific induction in particular. The book describes this basis and aims to show its relevance to the Philosophy of Science. Statistical and Inductive Inference by Minimum Message Length will be of special interest to graduate students and researchers in Machine Learning and Data Mining, scientists and analysts in various disciplines wishing to make use of computer techniques for hypothesis discovery, statisticians and econometricians interested in the underlying theory of their discipline, and persons interested in the Philosophy of Science. The book could also be used in a graduate-level course in Machine Learning and Estimation and Model-selection, Econometrics and Data Mining. C.S. Wallace was appointed Foundation Chair of Computer Science at Monash University in 1968, at the age of 35, where he worked until his death in 2004. He received an ACM Fellowship in 1995, and was appointed Professor Emeritus in 1996. Professor Wallace made numerous significant contributions to diverse areas of Computer Science, such as Computer Architecture, Simulation and Machine Learning. His final research focused primarily on the Minimum Message Length Principle.

Finite Mixture Models

Download Finite Mixture Models PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 047165406X
Total Pages : 419 pages
Book Rating : 4.4/5 (716 download)

DOWNLOAD NOW!


Book Synopsis Finite Mixture Models by : Geoffrey McLachlan

Download or read book Finite Mixture Models written by Geoffrey McLachlan and published by John Wiley & Sons. This book was released on 2004-03-22 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date, comprehensive account of major issues in finitemixture modeling This volume provides an up-to-date account of the theory andapplications of modeling via finite mixture distributions. With anemphasis on the applications of mixture models in both mainstreamanalysis and other areas such as unsupervised pattern recognition,speech recognition, and medical imaging, the book describes theformulations of the finite mixture approach, details itsmethodology, discusses aspects of its implementation, andillustrates its application in many common statisticalcontexts. Major issues discussed in this book include identifiabilityproblems, actual fitting of finite mixtures through use of the EMalgorithm, properties of the maximum likelihood estimators soobtained, assessment of the number of components to be used in themixture, and the applicability of asymptotic theory in providing abasis for the solutions to some of these problems. The author alsoconsiders how the EM algorithm can be scaled to handle the fittingof mixture models to very large databases, as in data miningapplications. This comprehensive, practical guide: * Provides more than 800 references-40% published since 1995 * Includes an appendix listing available mixture software * Links statistical literature with machine learning and patternrecognition literature * Contains more than 100 helpful graphs, charts, and tables Finite Mixture Models is an important resource for both applied andtheoretical statisticians as well as for researchers in the manyareas in which finite mixture models can be used to analyze data.

Bayesian inference with INLA

Download Bayesian inference with INLA PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351707205
Total Pages : 330 pages
Book Rating : 4.3/5 (517 download)

DOWNLOAD NOW!


Book Synopsis Bayesian inference with INLA by : Virgilio Gomez-Rubio

Download or read book Bayesian inference with INLA written by Virgilio Gomez-Rubio and published by CRC Press. This book was released on 2020-02-20 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: The integrated nested Laplace approximation (INLA) is a recent computational method that can fit Bayesian models in a fraction of the time required by typical Markov chain Monte Carlo (MCMC) methods. INLA focuses on marginal inference on the model parameters of latent Gaussian Markov random fields models and exploits conditional independence properties in the model for computational speed. Bayesian Inference with INLA provides a description of INLA and its associated R package for model fitting. This book describes the underlying methodology as well as how to fit a wide range of models with R. Topics covered include generalized linear mixed-effects models, multilevel models, spatial and spatio-temporal models, smoothing methods, survival analysis, imputation of missing values, and mixture models. Advanced features of the INLA package and how to extend the number of priors and latent models available in the package are discussed. All examples in the book are fully reproducible and datasets and R code are available from the book website. This book will be helpful to researchers from different areas with some background in Bayesian inference that want to apply the INLA method in their work. The examples cover topics on biostatistics, econometrics, education, environmental science, epidemiology, public health, and the social sciences.

Handbook of Market Research

Download Handbook of Market Research PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9783319574110
Total Pages : 0 pages
Book Rating : 4.5/5 (741 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Market Research by : Christian Homburg

Download or read book Handbook of Market Research written by Christian Homburg and published by Springer. This book was released on 2021-12-03 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this handbook, internationally renowned scholars outline the current state-of-the-art of quantitative and qualitative market research. They discuss focal approaches to market research and guide students and practitioners in their real-life applications. Aspects covered include topics on data-related issues, methods, and applications. Data-related topics comprise chapters on experimental design, survey research methods, international market research, panel data fusion, and endogeneity. Method-oriented chapters look at a wide variety of data analysis methods relevant for market research, including chapters on regression, structural equation modeling (SEM), conjoint analysis, and text analysis. Application chapters focus on specific topics relevant for market research such as customer satisfaction, customer retention modeling, return on marketing, and return on price promotions. Each chapter is written by an expert in the field. The presentation of the material seeks to improve the intuitive and technical understanding of the methods covered.

Bayesian Nonparametrics

Download Bayesian Nonparametrics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387226540
Total Pages : 311 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Nonparametrics by : J.K. Ghosh

Download or read book Bayesian Nonparametrics written by J.K. Ghosh and published by Springer Science & Business Media. This book was released on 2006-05-11 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first systematic treatment of Bayesian nonparametric methods and the theory behind them. It will also appeal to statisticians in general. The book is primarily aimed at graduate students and can be used as the text for a graduate course in Bayesian non-parametrics.

The Oxford Handbook of Quantitative Methods, Vol. 2: Statistical Analysis

Download The Oxford Handbook of Quantitative Methods, Vol. 2: Statistical Analysis PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 0199934908
Total Pages : 784 pages
Book Rating : 4.1/5 (999 download)

DOWNLOAD NOW!


Book Synopsis The Oxford Handbook of Quantitative Methods, Vol. 2: Statistical Analysis by : Todd D. Little

Download or read book The Oxford Handbook of Quantitative Methods, Vol. 2: Statistical Analysis written by Todd D. Little and published by Oxford University Press. This book was released on 2013-02-01 with total page 784 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research today demands the application of sophisticated and powerful research tools. Fulfilling this need, The Oxford Handbook of Quantitative Methods is the complete tool box to deliver the most valid and generalizable answers to todays complex research questions. It is a one-stop source for learning and reviewing current best-practices in quantitative methods as practiced in the social, behavioral, and educational sciences. Comprising two volumes, this handbook covers a wealth of topics related to quantitative research methods. It begins with essential philosophical and ethical issues related to science and quantitative research. It then addresses core measurement topics before delving into the design of studies. Principal issues related to modern estimation and mathematical modeling are also detailed. Topics in the handbook then segway into the realm of statistical inference and modeling with chapters dedicated to classical approaches as well as modern latent variable approaches. Numerous chapters associated with longitudinal data and more specialized techniques round out this broad selection of topics. Comprehensive, authoritative, and user-friendly, this two-volume set will be an indispensable resource for serious researchers across the social, behavioral, and educational sciences.

Bayesian Statistics 9

Download Bayesian Statistics 9 PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 0199694583
Total Pages : 717 pages
Book Rating : 4.1/5 (996 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Statistics 9 by : José M. Bernardo

Download or read book Bayesian Statistics 9 written by José M. Bernardo and published by Oxford University Press. This book was released on 2011-10-06 with total page 717 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian statistics is a dynamic and fast-growing area of statistical research and the Valencia International Meetings provide the main forum for discussion. These resulting proceedings form an up-to-date collection of research.

Cladag 2017 Book of Short Papers

Download Cladag 2017 Book of Short Papers PDF Online Free

Author :
Publisher : Universitas Studiorum
ISBN 13 : 8899459711
Total Pages : 698 pages
Book Rating : 4.8/5 (994 download)

DOWNLOAD NOW!


Book Synopsis Cladag 2017 Book of Short Papers by : Francesca Greselin

Download or read book Cladag 2017 Book of Short Papers written by Francesca Greselin and published by Universitas Studiorum. This book was released on 2017-09-29 with total page 698 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the collection of the Abstract / Short Papers submitted by the authors of the International Conference of The CLAssification and Data Analysis Group (CLADAG) of the Italian Statistical Society (SIS), held in Milan (Italy) on September 13-15, 2017.

Bayesian Data Analysis, Third Edition

Download Bayesian Data Analysis, Third Edition PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439840954
Total Pages : 677 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Data Analysis, Third Edition by : Andrew Gelman

Download or read book Bayesian Data Analysis, Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Handbook of Bayesian Variable Selection

Download Handbook of Bayesian Variable Selection PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000510204
Total Pages : 491 pages
Book Rating : 4.0/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Bayesian Variable Selection by : Mahlet G. Tadesse

Download or read book Handbook of Bayesian Variable Selection written by Mahlet G. Tadesse and published by CRC Press. This book was released on 2021-12-24 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian variable selection has experienced substantial developments over the past 30 years with the proliferation of large data sets. Identifying relevant variables to include in a model allows simpler interpretation, avoids overfitting and multicollinearity, and can provide insights into the mechanisms underlying an observed phenomenon. Variable selection is especially important when the number of potential predictors is substantially larger than the sample size and sparsity can reasonably be assumed. The Handbook of Bayesian Variable Selection provides a comprehensive review of theoretical, methodological and computational aspects of Bayesian methods for variable selection. The topics covered include spike-and-slab priors, continuous shrinkage priors, Bayes factors, Bayesian model averaging, partitioning methods, as well as variable selection in decision trees and edge selection in graphical models. The handbook targets graduate students and established researchers who seek to understand the latest developments in the field. It also provides a valuable reference for all interested in applying existing methods and/or pursuing methodological extensions. Features: Provides a comprehensive review of methods and applications of Bayesian variable selection. Divided into four parts: Spike-and-Slab Priors; Continuous Shrinkage Priors; Extensions to various Modeling; Other Approaches to Bayesian Variable Selection. Covers theoretical and methodological aspects, as well as worked out examples with R code provided in the online supplement. Includes contributions by experts in the field. Supported by a website with code, data, and other supplementary material

Bayesian Hierarchical Models

Download Bayesian Hierarchical Models PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429532903
Total Pages : 487 pages
Book Rating : 4.4/5 (295 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Hierarchical Models by : Peter D. Congdon

Download or read book Bayesian Hierarchical Models written by Peter D. Congdon and published by CRC Press. This book was released on 2019-09-16 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: An intermediate-level treatment of Bayesian hierarchical models and their applications, this book demonstrates the advantages of a Bayesian approach to data sets involving inferences for collections of related units or variables, and in methods where parameters can be treated as random collections. Through illustrative data analysis and attention to statistical computing, this book facilitates practical implementation of Bayesian hierarchical methods. The new edition is a revision of the book Applied Bayesian Hierarchical Methods. It maintains a focus on applied modelling and data analysis, but now using entirely R-based Bayesian computing options. It has been updated with a new chapter on regression for causal effects, and one on computing options and strategies. This latter chapter is particularly important, due to recent advances in Bayesian computing and estimation, including the development of rjags and rstan. It also features updates throughout with new examples. The examples exploit and illustrate the broader advantages of the R computing environment, while allowing readers to explore alternative likelihood assumptions, regression structures, and assumptions on prior densities. Features: Provides a comprehensive and accessible overview of applied Bayesian hierarchical modelling Includes many real data examples to illustrate different modelling topics R code (based on rjags, jagsUI, R2OpenBUGS, and rstan) is integrated into the book, emphasizing implementation Software options and coding principles are introduced in new chapter on computing Programs and data sets available on the book’s website

Applied Bayesian Hierarchical Methods

Download Applied Bayesian Hierarchical Methods PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1584887214
Total Pages : 606 pages
Book Rating : 4.5/5 (848 download)

DOWNLOAD NOW!


Book Synopsis Applied Bayesian Hierarchical Methods by : Peter D. Congdon

Download or read book Applied Bayesian Hierarchical Methods written by Peter D. Congdon and published by CRC Press. This book was released on 2010-05-19 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of Markov chain Monte Carlo (MCMC) methods for estimating hierarchical models involves complex data structures and is often described as a revolutionary development. An intermediate-level treatment of Bayesian hierarchical models and their applications, Applied Bayesian Hierarchical Methods demonstrates the advantages of a Bayesian approach

Mixtures

Download Mixtures PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119998441
Total Pages : 352 pages
Book Rating : 4.1/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Mixtures by : Kerrie L. Mengersen

Download or read book Mixtures written by Kerrie L. Mengersen and published by John Wiley & Sons. This book was released on 2011-05-03 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book uses the EM (expectation maximization) algorithm to simultaneously estimate the missing data and unknown parameter(s) associated with a data set. The parameters describe the component distributions of the mixture; the distributions may be continuous or discrete. The editors provide a complete account of the applications, mathematical structure and statistical analysis of finite mixture distributions along with MCMC computational methods, together with a range of detailed discussions covering the applications of the methods and features chapters from the leading experts on the subject. The applications are drawn from scientific discipline, including biostatistics, computer science, ecology and finance. This area of statistics is important to a range of disciplines, and its methodology attracts interest from researchers in the fields in which it can be applied.

Mixture Model-Based Classification

Download Mixture Model-Based Classification PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1482225670
Total Pages : 212 pages
Book Rating : 4.4/5 (822 download)

DOWNLOAD NOW!


Book Synopsis Mixture Model-Based Classification by : Paul D. McNicholas

Download or read book Mixture Model-Based Classification written by Paul D. McNicholas and published by CRC Press. This book was released on 2016-10-04 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This is a great overview of the field of model-based clustering and classification by one of its leading developers. McNicholas provides a resource that I am certain will be used by researchers in statistics and related disciplines for quite some time. The discussion of mixtures with heavy tails and asymmetric distributions will place this text as the authoritative, modern reference in the mixture modeling literature." (Douglas Steinley, University of Missouri) Mixture Model-Based Classification is the first monograph devoted to mixture model-based approaches to clustering and classification. This is both a book for established researchers and newcomers to the field. A history of mixture models as a tool for classification is provided and Gaussian mixtures are considered extensively, including mixtures of factor analyzers and other approaches for high-dimensional data. Non-Gaussian mixtures are considered, from mixtures with components that parameterize skewness and/or concentration, right up to mixtures of multiple scaled distributions. Several other important topics are considered, including mixture approaches for clustering and classification of longitudinal data as well as discussion about how to define a cluster Paul D. McNicholas is the Canada Research Chair in Computational Statistics at McMaster University, where he is a Professor in the Department of Mathematics and Statistics. His research focuses on the use of mixture model-based approaches for classification, with particular attention to clustering applications, and he has published extensively within the field. He is an associate editor for several journals and has served as a guest editor for a number of special issues on mixture models.

Probabilistic Finite Element Model Updating Using Bayesian Statistics

Download Probabilistic Finite Element Model Updating Using Bayesian Statistics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 111915300X
Total Pages : 248 pages
Book Rating : 4.1/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Probabilistic Finite Element Model Updating Using Bayesian Statistics by : Tshilidzi Marwala

Download or read book Probabilistic Finite Element Model Updating Using Bayesian Statistics written by Tshilidzi Marwala and published by John Wiley & Sons. This book was released on 2016-09-23 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probabilistic Finite Element Model Updating Using Bayesian Statistics: Applications to Aeronautical and Mechanical Engineering Tshilidzi Marwala and Ilyes Boulkaibet, University of Johannesburg, South Africa Sondipon Adhikari, Swansea University, UK Covers the probabilistic finite element model based on Bayesian statistics with applications to aeronautical and mechanical engineering Finite element models are used widely to model the dynamic behaviour of many systems including in electrical, aerospace and mechanical engineering. The book covers probabilistic finite element model updating, achieved using Bayesian statistics. The Bayesian framework is employed to estimate the probabilistic finite element models which take into account of the uncertainties in the measurements and the modelling procedure. The Bayesian formulation achieves this by formulating the finite element model as the posterior distribution of the model given the measured data within the context of computational statistics and applies these in aeronautical and mechanical engineering. Probabilistic Finite Element Model Updating Using Bayesian Statistics contains simple explanations of computational statistical techniques such as Metropolis-Hastings Algorithm, Slice sampling, Markov Chain Monte Carlo method, hybrid Monte Carlo as well as Shadow Hybrid Monte Carlo and their relevance in engineering. Key features: Contains several contributions in the area of model updating using Bayesian techniques which are useful for graduate students. Explains in detail the use of Bayesian techniques to quantify uncertainties in mechanical structures as well as the use of Markov Chain Monte Carlo techniques to evaluate the Bayesian formulations. The book is essential reading for researchers, practitioners and students in mechanical and aerospace engineering.

Handbook of Mixture Analysis

Download Handbook of Mixture Analysis PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429508867
Total Pages : 489 pages
Book Rating : 4.4/5 (295 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Mixture Analysis by : Sylvia Fruhwirth-Schnatter

Download or read book Handbook of Mixture Analysis written by Sylvia Fruhwirth-Schnatter and published by CRC Press. This book was released on 2019-01-04 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mixture models have been around for over 150 years, and they are found in many branches of statistical modelling, as a versatile and multifaceted tool. They can be applied to a wide range of data: univariate or multivariate, continuous or categorical, cross-sectional, time series, networks, and much more. Mixture analysis is a very active research topic in statistics and machine learning, with new developments in methodology and applications taking place all the time. The Handbook of Mixture Analysis is a very timely publication, presenting a broad overview of the methods and applications of this important field of research. It covers a wide array of topics, including the EM algorithm, Bayesian mixture models, model-based clustering, high-dimensional data, hidden Markov models, and applications in finance, genomics, and astronomy. Features: Provides a comprehensive overview of the methods and applications of mixture modelling and analysis Divided into three parts: Foundations and Methods; Mixture Modelling and Extensions; and Selected Applications Contains many worked examples using real data, together with computational implementation, to illustrate the methods described Includes contributions from the leading researchers in the field The Handbook of Mixture Analysis is targeted at graduate students and young researchers new to the field. It will also be an important reference for anyone working in this field, whether they are developing new methodology, or applying the models to real scientific problems.