Machine Learning and Knowledge Discovery in Databases

Download Machine Learning and Knowledge Discovery in Databases PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 331946227X
Total Pages : 850 pages
Book Rating : 4.3/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Knowledge Discovery in Databases by : Paolo Frasconi

Download or read book Machine Learning and Knowledge Discovery in Databases written by Paolo Frasconi and published by Springer. This book was released on 2016-09-03 with total page 850 pages. Available in PDF, EPUB and Kindle. Book excerpt: The three volume set LNAI 9851, LNAI 9852, and LNAI 9853 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2016, held in Riva del Garda, Italy, in September 2016. The 123 full papers and 16 short papers presented were carefully reviewed and selected from a total of 460 submissions. The papers presented focus on practical and real-world studies of machine learning, knowledge discovery, data mining; innovative prototype implementations or mature systems that use machine learning techniques and knowledge discovery processes in a real setting; recent advances at the frontier of machine learning and data mining with other disciplines. Part I and Part II of the proceedings contain the full papers of the contributions presented in the scientific track and abstracts of the scientific plenary talks. Part III contains the full papers of the contributions presented in the industrial track, short papers describing demonstration, the nectar papers, and the abstracts of the industrial plenary talks.

Finite Mixture Models

Download Finite Mixture Models PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 047165406X
Total Pages : 419 pages
Book Rating : 4.4/5 (716 download)

DOWNLOAD NOW!


Book Synopsis Finite Mixture Models by : Geoffrey McLachlan

Download or read book Finite Mixture Models written by Geoffrey McLachlan and published by John Wiley & Sons. This book was released on 2004-03-22 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date, comprehensive account of major issues in finitemixture modeling This volume provides an up-to-date account of the theory andapplications of modeling via finite mixture distributions. With anemphasis on the applications of mixture models in both mainstreamanalysis and other areas such as unsupervised pattern recognition,speech recognition, and medical imaging, the book describes theformulations of the finite mixture approach, details itsmethodology, discusses aspects of its implementation, andillustrates its application in many common statisticalcontexts. Major issues discussed in this book include identifiabilityproblems, actual fitting of finite mixtures through use of the EMalgorithm, properties of the maximum likelihood estimators soobtained, assessment of the number of components to be used in themixture, and the applicability of asymptotic theory in providing abasis for the solutions to some of these problems. The author alsoconsiders how the EM algorithm can be scaled to handle the fittingof mixture models to very large databases, as in data miningapplications. This comprehensive, practical guide: * Provides more than 800 references-40% published since 1995 * Includes an appendix listing available mixture software * Links statistical literature with machine learning and patternrecognition literature * Contains more than 100 helpful graphs, charts, and tables Finite Mixture Models is an important resource for both applied andtheoretical statisticians as well as for researchers in the manyareas in which finite mixture models can be used to analyze data.

Mixture Models and Applications

Download Mixture Models and Applications PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030238768
Total Pages : 356 pages
Book Rating : 4.0/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Mixture Models and Applications by : Nizar Bouguila

Download or read book Mixture Models and Applications written by Nizar Bouguila and published by Springer. This book was released on 2019-08-13 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on recent advances, approaches, theories and applications related to mixture models. In particular, it presents recent unsupervised and semi-supervised frameworks that consider mixture models as their main tool. The chapters considers mixture models involving several interesting and challenging problems such as parameters estimation, model selection, feature selection, etc. The goal of this book is to summarize the recent advances and modern approaches related to these problems. Each contributor presents novel research, a practical study, or novel applications based on mixture models, or a survey of the literature. Reports advances on classic problems in mixture modeling such as parameter estimation, model selection, and feature selection; Present theoretical and practical developments in mixture-based modeling and their importance in different applications; Discusses perspectives and challenging future works related to mixture modeling.

Encyclopedia of Algorithms

Download Encyclopedia of Algorithms PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387307702
Total Pages : 1200 pages
Book Rating : 4.3/5 (873 download)

DOWNLOAD NOW!


Book Synopsis Encyclopedia of Algorithms by : Ming-Yang Kao

Download or read book Encyclopedia of Algorithms written by Ming-Yang Kao and published by Springer Science & Business Media. This book was released on 2008-08-06 with total page 1200 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of Springer’s renowned Major Reference Works, this awesome achievement provides a comprehensive set of solutions to important algorithmic problems for students and researchers interested in quickly locating useful information. This first edition of the reference focuses on high-impact solutions from the most recent decade, while later editions will widen the scope of the work. All entries have been written by experts, while links to Internet sites that outline their research work are provided. The entries have all been peer-reviewed. This defining reference is published both in print and on line.

Learning Bayesian Models with R

Download Learning Bayesian Models with R PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1783987618
Total Pages : 168 pages
Book Rating : 4.7/5 (839 download)

DOWNLOAD NOW!


Book Synopsis Learning Bayesian Models with R by : Dr. Hari M. Koduvely

Download or read book Learning Bayesian Models with R written by Dr. Hari M. Koduvely and published by Packt Publishing Ltd. This book was released on 2015-10-28 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: Become an expert in Bayesian Machine Learning methods using R and apply them to solve real-world big data problems About This Book Understand the principles of Bayesian Inference with less mathematical equations Learn state-of-the art Machine Learning methods Familiarize yourself with the recent advances in Deep Learning and Big Data frameworks with this step-by-step guide Who This Book Is For This book is for statisticians, analysts, and data scientists who want to build a Bayes-based system with R and implement it in their day-to-day models and projects. It is mainly intended for Data Scientists and Software Engineers who are involved in the development of Advanced Analytics applications. To understand this book, it would be useful if you have basic knowledge of probability theory and analytics and some familiarity with the programming language R. What You Will Learn Set up the R environment Create a classification model to predict and explore discrete variables Get acquainted with Probability Theory to analyze random events Build Linear Regression models Use Bayesian networks to infer the probability distribution of decision variables in a problem Model a problem using Bayesian Linear Regression approach with the R package BLR Use Bayesian Logistic Regression model to classify numerical data Perform Bayesian Inference on massively large data sets using the MapReduce programs in R and Cloud computing In Detail Bayesian Inference provides a unified framework to deal with all sorts of uncertainties when learning patterns form data using machine learning models and use it for predicting future observations. However, learning and implementing Bayesian models is not easy for data science practitioners due to the level of mathematical treatment involved. Also, applying Bayesian methods to real-world problems requires high computational resources. With the recent advances in computation and several open sources packages available in R, Bayesian modeling has become more feasible to use for practical applications today. Therefore, it would be advantageous for all data scientists and engineers to understand Bayesian methods and apply them in their projects to achieve better results. Learning Bayesian Models with R starts by giving you a comprehensive coverage of the Bayesian Machine Learning models and the R packages that implement them. It begins with an introduction to the fundamentals of probability theory and R programming for those who are new to the subject. Then the book covers some of the important machine learning methods, both supervised and unsupervised learning, implemented using Bayesian Inference and R. Every chapter begins with a theoretical description of the method explained in a very simple manner. Then, relevant R packages are discussed and some illustrations using data sets from the UCI Machine Learning repository are given. Each chapter ends with some simple exercises for you to get hands-on experience of the concepts and R packages discussed in the chapter. The last chapters are devoted to the latest development in the field, specifically Deep Learning, which uses a class of Neural Network models that are currently at the frontier of Artificial Intelligence. The book concludes with the application of Bayesian methods on Big Data using the Hadoop and Spark frameworks. Style and approach The book first gives you a theoretical description of the Bayesian models in simple language, followed by details of its implementation in the R package. Each chapter has illustrations for the use of Bayesian model and the corresponding R package, using data sets from the UCI Machine Learning repository. Each chapter also contains sufficient exercises for you to get more hands-on practice.

Proceedings of the Third SIAM International Conference on Data Mining

Download Proceedings of the Third SIAM International Conference on Data Mining PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 9780898715453
Total Pages : 368 pages
Book Rating : 4.7/5 (154 download)

DOWNLOAD NOW!


Book Synopsis Proceedings of the Third SIAM International Conference on Data Mining by : Daniel Barbara

Download or read book Proceedings of the Third SIAM International Conference on Data Mining written by Daniel Barbara and published by SIAM. This book was released on 2003-01-01 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: The third SIAM International Conference on Data Mining provided an open forum for the presentation, discussion and development of innovative algorithms, software and theories for data mining applications and data intensive computation. This volume includes 21 research papers.

ECAI 2014

Download ECAI 2014 PDF Online Free

Author :
Publisher : IOS Press
ISBN 13 : 1614994196
Total Pages : 1264 pages
Book Rating : 4.6/5 (149 download)

DOWNLOAD NOW!


Book Synopsis ECAI 2014 by : T. Schaub

Download or read book ECAI 2014 written by T. Schaub and published by IOS Press. This book was released on 2014-08 with total page 1264 pages. Available in PDF, EPUB and Kindle. Book excerpt: The role of artificial intelligence (AI) applications in fields as diverse as medicine, economics, linguistics, logical analysis and industry continues to grow in scope and importance. AI has become integral to the effective functioning of much of the technical infrastructure we all now take for granted as part of our daily lives. This book presents the papers from the 21st biennial European Conference on Artificial Intelligence, ECAI 2014, held in Prague, Czech Republic, in August 2014. The ECAI conference remains Europe's principal opportunity for researchers and practitioners of Artificial Intelligence to gather and to discuss the latest trends and challenges in all subfields of AI, as well as to demonstrate innovative applications and uses of advanced AI technology. Included here are the 158 long papers and 94 short papers selected for presentation at the conference. Many of the papers cover the fields of knowledge representation, reasoning and logic as well as agent-based and multi-agent systems, machine learning, and data mining. The proceedings of PAIS 2014 and the PAIS System Demonstrations are also included in this volume, which will be of interest to all those wishing to keep abreast of the latest developments in the field of AI.

New Frontiers in Mining Complex Patterns

Download New Frontiers in Mining Complex Patterns PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319786806
Total Pages : 208 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis New Frontiers in Mining Complex Patterns by : Annalisa Appice

Download or read book New Frontiers in Mining Complex Patterns written by Annalisa Appice and published by Springer. This book was released on 2018-03-27 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book features a collection of revised and significantly extended versions of the papers accepted for presentation at the 6th International Workshop on New Frontiers in Mining Complex Patterns, NFMCP 2017, held in conjunction with ECML-PKDD 2017 in Skopje, Macedonia, in September 2017. The book is composed of five parts: feature selection and induction; classification prediction; clustering; pattern discovery; applications. The workshop was aimed at discussing and introducing new algorithmic foundations and representation formalisms in complex pattern discovery. Finally, it encouraged the integration of recent results from existing fields, such as Statistics, Machine Learning and Big Data Analytics.

Mathematics and Computation in Imaging Science and Information Processing

Download Mathematics and Computation in Imaging Science and Information Processing PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9812709061
Total Pages : 275 pages
Book Rating : 4.8/5 (127 download)

DOWNLOAD NOW!


Book Synopsis Mathematics and Computation in Imaging Science and Information Processing by : Say Song Goh

Download or read book Mathematics and Computation in Imaging Science and Information Processing written by Say Song Goh and published by World Scientific. This book was released on 2007 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: The explosion of data arising from rapid advances in communication, sensing and computational power has concentrated research effort on more advanced techniques for the representation, processing, analysis and interpretation of data sets. In view of these exciting developments, the program OC Mathematics and Computation in Imaging Science and Information ProcessingOCO was held at the Institute for Mathematical Sciences, National University of Singapore, from July to December 2003 and in August 2004 to promote and facilitate multidisciplinary research in the area. As part of the program, a series of tutorial lectures were conducted by international experts on a wide variety of topics in mathematical image, signal and information processing. This compiled volume contains survey articles by the tutorial speakers, all specialists in their respective areas. They collectively provide graduate students and researchers new to the field a unique and valuable introduction to a range of important topics at the frontiers of current research. Sample Chapter(s). Foreword (46 KB). Chapter 1: Subdivision on Arbitrary Meshes: Algorithms and Theory (771 KB). Contents: Subdivision on Arbitrary Meshes: Algorithms and Theory (D Zorin); High Order Numerical Methods for Time Dependent Hamilton-Jacobi Equations (C-W Shu); Theory and Computation of Variational Image Deblurring (T F Chan & J Shen); Data Hiding OCo Theory and Algorithms (P Moulin & R Koetter); Image Steganography and Steganalysis: Concepts and Practice (M Kharrazi et al.); The Apriori Algorithm OCo A Tutorial (M Hegland). Readership: Graduate students and researchers in mathematical image, signal and information processing."

Bayesian Data Analysis, Third Edition

Download Bayesian Data Analysis, Third Edition PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439840954
Total Pages : 677 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Data Analysis, Third Edition by : Andrew Gelman

Download or read book Bayesian Data Analysis, Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Advances in Pattern Recognition

Download Advances in Pattern Recognition PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540445226
Total Pages : 918 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Advances in Pattern Recognition by : Francesc J. Ferri

Download or read book Advances in Pattern Recognition written by Francesc J. Ferri and published by Springer. This book was released on 2003-06-26 with total page 918 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the joint refereed proceedings of the 8th International Workshop on Structural and Syntactic Pattern Recognition and the 3rd International Workshop on Statistical Techniques in Pattern Recognition, SSPR 2000 and SPR 2000, held in Alicante, Spain in August/September 2000. The 52 revised full papers presented together with five invited papers and 35 posters were carefully reviewed and selected from a total of 130 submissions. The book offers topical sections on hybrid and combined methods, document image analysis, grammar and language methods, structural matching, graph-based methods, shape analysis, clustering and density estimation, object recognition, general methodology, and feature extraction and selection.

Mixture Models

Download Mixture Models PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1040009875
Total Pages : 398 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Mixture Models by : Weixin Yao

Download or read book Mixture Models written by Weixin Yao and published by CRC Press. This book was released on 2024-04-18 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mixture models are a powerful tool for analyzing complex and heterogeneous datasets across many scientific fields, from finance to genomics. Mixture Models: Parametric, Semiparametric, and New Directions provides an up-to-date introduction to these models, their recent developments, and their implementation using R. It fills a gap in the literature by covering not only the basics of finite mixture models, but also recent developments such as semiparametric extensions, robust modeling, label switching, and high-dimensional modeling. Features Comprehensive overview of the methods and applications of mixture models Key topics include hypothesis testing, model selection, estimation methods, and Bayesian approaches Recent developments, such as semiparametric extensions, robust modeling, label switching, and high-dimensional modeling Examples and case studies from such fields as astronomy, biology, genomics, economics, finance, medicine, engineering, and sociology Integrated R code for many of the models, with code and data available in the R Package MixSemiRob Mixture Models: Parametric, Semiparametric, and New Directions is a valuable resource for researchers and postgraduate students from statistics, biostatistics, and other fields. It could be used as a textbook for a course on model-based clustering methods, and as a supplementary text for courses on data mining, semiparametric modeling, and high-dimensional data analysis.

Systems Factorial Technology

Download Systems Factorial Technology PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128043865
Total Pages : 430 pages
Book Rating : 4.1/5 (28 download)

DOWNLOAD NOW!


Book Synopsis Systems Factorial Technology by : Daniel Little

Download or read book Systems Factorial Technology written by Daniel Little and published by Academic Press. This book was released on 2017-04-10 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: Systems Factorial Technology: A Theory Driven Methodology for the Identification of Perceptual and Cognitive Mechanisms explores the theoretical and methodological tools used to investigate fundamental questions central to basic psychological and perceptual processes. Such processes include detection, identification, classification, recognition, and decision-making. This book collects the tools that allow researchers to deal with the pervasive model mimicry problems which exist in standard experimental and theoretical paradigms and includes novel applications to not only basic psychological questions, but also clinical diagnosis and links to neuroscience. Researchers can use this book to begin using the methodology behind SFT and to get an overview of current uses and future directions. The collected developments and applications of SFT allow us to peer inside the human mind and provide strong constraints on psychological theory. - Provides a thorough introduction to the diagnostic tools offered by SFT - Includes a tutorial on applying the method to reaction time data from a variety of different situations - Introduces novel advances for testing the significance of SFT results - Incorporates new measures that allow for the relaxation of the high accuracy criterion - Examines tools to expand the scope of SFT analyses - Applies SFT to a spectrum of different cognitive domains across different sensory modalities

Data Mining Methods for Knowledge Discovery

Download Data Mining Methods for Knowledge Discovery PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461555892
Total Pages : 508 pages
Book Rating : 4.4/5 (615 download)

DOWNLOAD NOW!


Book Synopsis Data Mining Methods for Knowledge Discovery by : Krzysztof J. Cios

Download or read book Data Mining Methods for Knowledge Discovery written by Krzysztof J. Cios and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining Methods for Knowledge Discovery provides an introduction to the data mining methods that are frequently used in the process of knowledge discovery. This book first elaborates on the fundamentals of each of the data mining methods: rough sets, Bayesian analysis, fuzzy sets, genetic algorithms, machine learning, neural networks, and preprocessing techniques. The book then goes on to thoroughly discuss these methods in the setting of the overall process of knowledge discovery. Numerous illustrative examples and experimental findings are also included. Each chapter comes with an extensive bibliography. Data Mining Methods for Knowledge Discovery is intended for senior undergraduate and graduate students, as well as a broad audience of professionals in computer and information sciences, medical informatics, and business information systems.

Advanced Data Mining and Applications

Download Advanced Data Mining and Applications PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319691791
Total Pages : 879 pages
Book Rating : 4.3/5 (196 download)

DOWNLOAD NOW!


Book Synopsis Advanced Data Mining and Applications by : Gao Cong

Download or read book Advanced Data Mining and Applications written by Gao Cong and published by Springer. This book was released on 2017-10-30 with total page 879 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 13th International Conference on Advanced Data Mining and Applications, ADMA 2017, held in Singapore in November 2017. The 20 full and 38 short papers presented in this volume were carefully reviewed and selected from 118 submissions. The papers were organized in topical sections named: database and distributed machine learning; recommender system; social network and social media; machine learning; classification and clustering methods; behavior modeling and user profiling; bioinformatics and medical data analysis; spatio-temporal data; natural language processing and text mining; data mining applications; applications; and demos.

Principles of Data Mining

Download Principles of Data Mining PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 9780262082907
Total Pages : 594 pages
Book Rating : 4.0/5 (829 download)

DOWNLOAD NOW!


Book Synopsis Principles of Data Mining by : David J. Hand

Download or read book Principles of Data Mining written by David J. Hand and published by MIT Press. This book was released on 2001-08-17 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The growing interest in data mining is motivated by a common problem across disciplines: how does one store, access, model, and ultimately describe and understand very large data sets? Historically, different aspects of data mining have been addressed independently by different disciplines. This is the first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The book consists of three sections. The first, foundations, provides a tutorial overview of the principles underlying data mining algorithms and their application. The presentation emphasizes intuition rather than rigor. The second section, data mining algorithms, shows how algorithms are constructed to solve specific problems in a principled manner. The algorithms covered include trees and rules for classification and regression, association rules, belief networks, classical statistical models, nonlinear models such as neural networks, and local "memory-based" models. The third section shows how all of the preceding analysis fits together when applied to real-world data mining problems. Topics include the role of metadata, how to handle missing data, and data preprocessing.

Machine Learning and Data Mining in Pattern Recognition

Download Machine Learning and Data Mining in Pattern Recognition PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 364203070X
Total Pages : 837 pages
Book Rating : 4.6/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Data Mining in Pattern Recognition by : Petra Perner

Download or read book Machine Learning and Data Mining in Pattern Recognition written by Petra Perner and published by Springer Science & Business Media. This book was released on 2009-07-21 with total page 837 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is no royal road to science, and only those who do not dread the fatiguing climb of its steep paths have a chance of gaining its luminous summits. Karl Marx A Universial Genius of the 19th Century Many scientists from all over the world during the past two years since the MLDM 2007 have come along on the stony way to the sunny summit of science and have worked hard on new ideas and applications in the area of data mining in pattern r- ognition. Our thanks go to all those who took part in this year's MLDM. We appre- ate their submissions and the ideas shared with the Program Committee. We received over 205 submissions from all over the world to the International Conference on - chine Learning and Data Mining, MLDM 2009. The Program Committee carefully selected the best papers for this year’s program and gave detailed comments on each submitted paper. There were 63 papers selected for oral presentation and 17 papers for poster presentation. The topics range from theoretical topics for classification, clustering, association rule and pattern mining to specific data-mining methods for the different multimedia data types such as image mining, text mining, video mining and Web mining. Among these topics this year were special contributions to subtopics such as attribute discre- zation and data preparation, novelty and outlier detection, and distances and simila- ties.