Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Bayesian Methods In Statistics
Download Bayesian Methods In Statistics full books in PDF, epub, and Kindle. Read online Bayesian Methods In Statistics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Bayesian Methods for Statistical Analysis by : Borek Puza
Download or read book Bayesian Methods for Statistical Analysis written by Borek Puza and published by ANU Press. This book was released on 2015-10-01 with total page 698 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Methods for Statistical Analysis is a book on statistical methods for analysing a wide variety of data. The book consists of 12 chapters, starting with basic concepts and covering numerous topics, including Bayesian estimation, decision theory, prediction, hypothesis testing, hierarchical models, Markov chain Monte Carlo methods, finite population inference, biased sampling and nonignorable nonresponse. The book contains many exercises, all with worked solutions, including complete computer code. It is suitable for self-study or a semester-long course, with three hours of lectures and one tutorial per week for 13 weeks.
Book Synopsis Bayesian Methods in Statistics by : Mel Slater
Download or read book Bayesian Methods in Statistics written by Mel Slater and published by Sage Publications Limited. This book was released on 2021-12-11 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gets you up and running with doing complex Bayesian statistics, focussing on applied analysis rather than maths.
Book Synopsis Bayesian Statistical Methods by : Brian J. Reich
Download or read book Bayesian Statistical Methods written by Brian J. Reich and published by CRC Press. This book was released on 2019-04-12 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Statistical Methods provides data scientists with the foundational and computational tools needed to carry out a Bayesian analysis. This book focuses on Bayesian methods applied routinely in practice including multiple linear regression, mixed effects models and generalized linear models (GLM). The authors include many examples with complete R code and comparisons with analogous frequentist procedures. In addition to the basic concepts of Bayesian inferential methods, the book covers many general topics: Advice on selecting prior distributions Computational methods including Markov chain Monte Carlo (MCMC) Model-comparison and goodness-of-fit measures, including sensitivity to priors Frequentist properties of Bayesian methods Case studies covering advanced topics illustrate the flexibility of the Bayesian approach: Semiparametric regression Handling of missing data using predictive distributions Priors for high-dimensional regression models Computational techniques for large datasets Spatial data analysis The advanced topics are presented with sufficient conceptual depth that the reader will be able to carry out such analysis and argue the relative merits of Bayesian and classical methods. A repository of R code, motivating data sets, and complete data analyses are available on the book’s website. Brian J. Reich, Associate Professor of Statistics at North Carolina State University, is currently the editor-in-chief of the Journal of Agricultural, Biological, and Environmental Statistics and was awarded the LeRoy & Elva Martin Teaching Award. Sujit K. Ghosh, Professor of Statistics at North Carolina State University, has over 22 years of research and teaching experience in conducting Bayesian analyses, received the Cavell Brownie mentoring award, and served as the Deputy Director at the Statistical and Applied Mathematical Sciences Institute.
Book Synopsis Bayesian Data Analysis, Third Edition by : Andrew Gelman
Download or read book Bayesian Data Analysis, Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
Download or read book Bayesian Methods written by Jeff Gill and published by CRC Press. This book was released on 2007-11-26 with total page 696 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first edition of Bayesian Methods: A Social and Behavioral Sciences Approach helped pave the way for Bayesian approaches to become more prominent in social science methodology. While the focus remains on practical modeling and basic theory as well as on intuitive explanations and derivations without skipping steps, this second edition incorporates the latest methodology and recent changes in software offerings. New to the Second Edition Two chapters on Markov chain Monte Carlo (MCMC) that cover ergodicity, convergence, mixing, simulated annealing, reversible jump MCMC, and coupling Expanded coverage of Bayesian linear and hierarchical models More technical and philosophical details on prior distributions A dedicated R package (BaM) with data and code for the examples as well as a set of functions for practical purposes such as calculating highest posterior density (HPD) intervals Requiring only a basic working knowledge of linear algebra and calculus, this text is one of the few to offer a graduate-level introduction to Bayesian statistics for social scientists. It first introduces Bayesian statistics and inference, before moving on to assess model quality and fit. Subsequent chapters examine hierarchical models within a Bayesian context and explore MCMC techniques and other numerical methods. Concentrating on practical computing issues, the author includes specific details for Bayesian model building and testing and uses the R and BUGS software for examples and exercises.
Book Synopsis Bayesian Statistics for Experimental Scientists by : Richard A. Chechile
Download or read book Bayesian Statistics for Experimental Scientists written by Richard A. Chechile and published by MIT Press. This book was released on 2020-09-08 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the Bayesian approach to statistical inference that demonstrates its superiority to orthodox frequentist statistical analysis. This book offers an introduction to the Bayesian approach to statistical inference, with a focus on nonparametric and distribution-free methods. It covers not only well-developed methods for doing Bayesian statistics but also novel tools that enable Bayesian statistical analyses for cases that previously did not have a full Bayesian solution. The book's premise is that there are fundamental problems with orthodox frequentist statistical analyses that distort the scientific process. Side-by-side comparisons of Bayesian and frequentist methods illustrate the mismatch between the needs of experimental scientists in making inferences from data and the properties of the standard tools of classical statistics.
Book Synopsis Bayesian Statistics for Beginners by : Therese M. Donovan
Download or read book Bayesian Statistics for Beginners written by Therese M. Donovan and published by Oxford University Press, USA. This book was released on 2019 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an entry-level book on Bayesian statistics written in a casual, and conversational tone. The authors walk a reader through many sample problems step-by-step to provide those with little background in math or statistics with the vocabulary, notation, and understanding of the calculations used in many Bayesian problems.
Book Synopsis A First Course in Bayesian Statistical Methods by : Peter D. Hoff
Download or read book A First Course in Bayesian Statistical Methods written by Peter D. Hoff and published by Springer Science & Business Media. This book was released on 2009-06-02 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained introduction to probability, exchangeability and Bayes’ rule provides a theoretical understanding of the applied material. Numerous examples with R-code that can be run "as-is" allow the reader to perform the data analyses themselves. The development of Monte Carlo and Markov chain Monte Carlo methods in the context of data analysis examples provides motivation for these computational methods.
Book Synopsis Bayesian Methods for Hackers by : Cameron Davidson-Pilon
Download or read book Bayesian Methods for Hackers written by Cameron Davidson-Pilon and published by Addison-Wesley Professional. This book was released on 2015-09-30 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master Bayesian Inference through Practical Examples and Computation–Without Advanced Mathematical Analysis Bayesian methods of inference are deeply natural and extremely powerful. However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice–freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You’ll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you’ve mastered these techniques, you’ll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes • Learning the Bayesian “state of mind” and its practical implications • Understanding how computers perform Bayesian inference • Using the PyMC Python library to program Bayesian analyses • Building and debugging models with PyMC • Testing your model’s “goodness of fit” • Opening the “black box” of the Markov Chain Monte Carlo algorithm to see how and why it works • Leveraging the power of the “Law of Large Numbers” • Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning • Using loss functions to measure an estimate’s weaknesses based on your goals and desired outcomes • Selecting appropriate priors and understanding how their influence changes with dataset size • Overcoming the “exploration versus exploitation” dilemma: deciding when “pretty good” is good enough • Using Bayesian inference to improve A/B testing • Solving data science problems when only small amounts of data are available Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.
Book Synopsis Introduction to Bayesian Statistics by : William M. Bolstad
Download or read book Introduction to Bayesian Statistics written by William M. Bolstad and published by John Wiley & Sons. This book was released on 2016-09-02 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: "...this edition is useful and effective in teaching Bayesian inference at both elementary and intermediate levels. It is a well-written book on elementary Bayesian inference, and the material is easily accessible. It is both concise and timely, and provides a good collection of overviews and reviews of important tools used in Bayesian statistical methods." There is a strong upsurge in the use of Bayesian methods in applied statistical analysis, yet most introductory statistics texts only present frequentist methods. Bayesian statistics has many important advantages that students should learn about if they are going into fields where statistics will be used. In this third Edition, four newly-added chapters address topics that reflect the rapid advances in the field of Bayesian statistics. The authors continue to provide a Bayesian treatment of introductory statistical topics, such as scientific data gathering, discrete random variables, robust Bayesian methods, and Bayesian approaches to inference for discrete random variables, binomial proportions, Poisson, and normal means, and simple linear regression. In addition, more advanced topics in the field are presented in four new chapters: Bayesian inference for a normal with unknown mean and variance; Bayesian inference for a Multivariate Normal mean vector; Bayesian inference for the Multiple Linear Regression Model; and Computational Bayesian Statistics including Markov Chain Monte Carlo. The inclusion of these topics will facilitate readers' ability to advance from a minimal understanding of Statistics to the ability to tackle topics in more applied, advanced level books. Minitab macros and R functions are available on the book's related website to assist with chapter exercises. Introduction to Bayesian Statistics, Third Edition also features: Topics including the Joint Likelihood function and inference using independent Jeffreys priors and join conjugate prior The cutting-edge topic of computational Bayesian Statistics in a new chapter, with a unique focus on Markov Chain Monte Carlo methods Exercises throughout the book that have been updated to reflect new applications and the latest software applications Detailed appendices that guide readers through the use of R and Minitab software for Bayesian analysis and Monte Carlo simulations, with all related macros available on the book's website Introduction to Bayesian Statistics, Third Edition is a textbook for upper-undergraduate or first-year graduate level courses on introductory statistics course with a Bayesian emphasis. It can also be used as a reference work for statisticians who require a working knowledge of Bayesian statistics.
Book Synopsis Bayesian Analysis for the Social Sciences by : Simon Jackman
Download or read book Bayesian Analysis for the Social Sciences written by Simon Jackman and published by John Wiley & Sons. This book was released on 2009-10-27 with total page 598 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian methods are increasingly being used in the social sciences, as the problems encountered lend themselves so naturally to the subjective qualities of Bayesian methodology. This book provides an accessible introduction to Bayesian methods, tailored specifically for social science students. It contains lots of real examples from political science, psychology, sociology, and economics, exercises in all chapters, and detailed descriptions of all the key concepts, without assuming any background in statistics beyond a first course. It features examples of how to implement the methods using WinBUGS – the most-widely used Bayesian analysis software in the world – and R – an open-source statistical software. The book is supported by a Website featuring WinBUGS and R code, and data sets.
Book Synopsis Introduction to Bayesian Statistics by : William M. Bolstad
Download or read book Introduction to Bayesian Statistics written by William M. Bolstad and published by John Wiley & Sons. This book was released on 2013-06-05 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the First Edition "I cannot think of a better book for teachers of introductory statistics who want a readable and pedagogically sound text to introduce Bayesian statistics." —Statistics in Medical Research "[This book] is written in a lucid conversational style, which is so rare in mathematical writings. It does an excellent job of presenting Bayesian statistics as a perfectly reasonable approach to elementary problems in statistics." —STATS: The Magazine for Students of Statistics, American Statistical Association "Bolstad offers clear explanations of every concept and method making the book accessible and valuable to undergraduate and graduate students alike." —Journal of Applied Statistics The use of Bayesian methods in applied statistical analysis has become increasingly popular, yet most introductory statistics texts continue to only present the subject using frequentist methods. Introduction to Bayesian Statistics, Second Edition focuses on Bayesian methods that can be used for inference, and it also addresses how these methods compare favorably with frequentist alternatives. Teaching statistics from the Bayesian perspective allows for direct probability statements about parameters, and this approach is now more relevant than ever due to computer programs that allow practitioners to work on problems that contain many parameters. This book uniquely covers the topics typically found in an introductory statistics book—but from a Bayesian perspective—giving readers an advantage as they enter fields where statistics is used. This Second Edition provides: Extended coverage of Poisson and Gamma distributions Two new chapters on Bayesian inference for Poisson observations and Bayesian inference for the standard deviation for normal observations A twenty-five percent increase in exercises with selected answers at the end of the book A calculus refresher appendix and a summary on the use of statistical tables New computer exercises that use R functions and Minitab® macros for Bayesian analysis and Monte Carlo simulations Introduction to Bayesian Statistics, Second Edition is an invaluable textbook for advanced undergraduate and graduate-level statistics courses as well as a practical reference for statisticians who require a working knowledge of Bayesian statistics.
Book Synopsis Bayesian Methods by : Thomas Leonard
Download or read book Bayesian Methods written by Thomas Leonard and published by Cambridge University Press. This book was released on 2001-08-06 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian statistics directed towards mainstream statistics. How to infer scientific, medical, and social conclusions from numerical data.
Download or read book Bayesian Methods written by Jeff Gill and published by CRC Press. This book was released on 2014-12-11 with total page 689 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Update of the Most Popular Graduate-Level Introductions to Bayesian Statistics for Social ScientistsNow that Bayesian modeling has become standard, MCMC is well understood and trusted, and computing power continues to increase, Bayesian Methods: A Social and Behavioral Sciences Approach, Third Edition focuses more on implementation details of th
Book Synopsis Bayesian Data Analysis, Second Edition by : Andrew Gelman
Download or read book Bayesian Data Analysis, Second Edition written by Andrew Gelman and published by CRC Press. This book was released on 2003-07-29 with total page 717 pages. Available in PDF, EPUB and Kindle. Book excerpt: Incorporating new and updated information, this second edition of THE bestselling text in Bayesian data analysis continues to emphasize practice over theory, describing how to conceptualize, perform, and critique statistical analyses from a Bayesian perspective. Its world-class authors provide guidance on all aspects of Bayesian data analysis and include examples of real statistical analyses, based on their own research, that demonstrate how to solve complicated problems. Changes in the new edition include: Stronger focus on MCMC Revision of the computational advice in Part III New chapters on nonlinear models and decision analysis Several additional applied examples from the authors' recent research Additional chapters on current models for Bayesian data analysis such as nonlinear models, generalized linear mixed models, and more Reorganization of chapters 6 and 7 on model checking and data collection Bayesian computation is currently at a stage where there are many reasonable ways to compute any given posterior distribution. However, the best approach is not always clear ahead of time. Reflecting this, the new edition offers a more pluralistic presentation, giving advice on performing computations from many perspectives while making clear the importance of being aware that there are different ways to implement any given iterative simulation computation. The new approach, additional examples, and updated information make Bayesian Data Analysis an excellent introductory text and a reference that working scientists will use throughout their professional life.
Book Synopsis Statistical Decision Theory and Bayesian Analysis by : James O. Berger
Download or read book Statistical Decision Theory and Bayesian Analysis written by James O. Berger and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 633 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this new edition the author has added substantial material on Bayesian analysis, including lengthy new sections on such important topics as empirical and hierarchical Bayes analysis, Bayesian calculation, Bayesian communication, and group decision making. With these changes, the book can be used as a self-contained introduction to Bayesian analysis. In addition, much of the decision-theoretic portion of the text was updated, including new sections covering such modern topics as minimax multivariate (Stein) estimation.
Book Synopsis Bayesian Statistics the Fun Way by : Will Kurt
Download or read book Bayesian Statistics the Fun Way written by Will Kurt and published by No Starch Press. This book was released on 2019-07-09 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fun guide to learning Bayesian statistics and probability through unusual and illustrative examples. Probability and statistics are increasingly important in a huge range of professions. But many people use data in ways they don't even understand, meaning they aren't getting the most from it. Bayesian Statistics the Fun Way will change that. This book will give you a complete understanding of Bayesian statistics through simple explanations and un-boring examples. Find out the probability of UFOs landing in your garden, how likely Han Solo is to survive a flight through an asteroid shower, how to win an argument about conspiracy theories, and whether a burglary really was a burglary, to name a few examples. By using these off-the-beaten-track examples, the author actually makes learning statistics fun. And you'll learn real skills, like how to: - How to measure your own level of uncertainty in a conclusion or belief - Calculate Bayes theorem and understand what it's useful for - Find the posterior, likelihood, and prior to check the accuracy of your conclusions - Calculate distributions to see the range of your data - Compare hypotheses and draw reliable conclusions from them Next time you find yourself with a sheaf of survey results and no idea what to do with them, turn to Bayesian Statistics the Fun Way to get the most value from your data.