Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Basic Python In Finance
Download Basic Python In Finance full books in PDF, epub, and Kindle. Read online Basic Python In Finance ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Python for Finance by : Yves Hilpisch
Download or read book Python for Finance written by Yves Hilpisch and published by "O'Reilly Media, Inc.". This book was released on 2018-12-05 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: The financial industry has recently adopted Python at a tremendous rate, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. Updated for Python 3, the second edition of this hands-on book helps you get started with the language, guiding developers and quantitative analysts through Python libraries and tools for building financial applications and interactive financial analytics. Using practical examples throughout the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks.
Book Synopsis Python for Finance by : Yves Hilpisch
Download or read book Python for Finance written by Yves Hilpisch and published by "O'Reilly Media, Inc.". This book was released on 2014-12-11 with total page 750 pages. Available in PDF, EPUB and Kindle. Book excerpt: The financial industry has adopted Python at a tremendous rate recently, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. This hands-on guide helps both developers and quantitative analysts get started with Python, and guides you through the most important aspects of using Python for quantitative finance. Using practical examples through the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks, with topics that include: Fundamentals: Python data structures, NumPy array handling, time series analysis with pandas, visualization with matplotlib, high performance I/O operations with PyTables, date/time information handling, and selected best practices Financial topics: mathematical techniques with NumPy, SciPy and SymPy such as regression and optimization; stochastics for Monte Carlo simulation, Value-at-Risk, and Credit-Value-at-Risk calculations; statistics for normality tests, mean-variance portfolio optimization, principal component analysis (PCA), and Bayesian regression Special topics: performance Python for financial algorithms, such as vectorization and parallelization, integrating Python with Excel, and building financial applications based on Web technologies
Download or read book Python for Finance written by Yuxing Yan and published by Packt Publishing Ltd. This book was released on 2017-06-30 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn and implement various Quantitative Finance concepts using the popular Python libraries About This Book Understand the fundamentals of Python data structures and work with time-series data Implement key concepts in quantitative finance using popular Python libraries such as NumPy, SciPy, and matplotlib A step-by-step tutorial packed with many Python programs that will help you learn how to apply Python to finance Who This Book Is For This book assumes that the readers have some basic knowledge related to Python. However, he/she has no knowledge of quantitative finance. In addition, he/she has no knowledge about financial data. What You Will Learn Become acquainted with Python in the first two chapters Run CAPM, Fama-French 3-factor, and Fama-French-Carhart 4-factor models Learn how to price a call, put, and several exotic options Understand Monte Carlo simulation, how to write a Python program to replicate the Black-Scholes-Merton options model, and how to price a few exotic options Understand the concept of volatility and how to test the hypothesis that volatility changes over the years Understand the ARCH and GARCH processes and how to write related Python programs In Detail This book uses Python as its computational tool. Since Python is free, any school or organization can download and use it. This book is organized according to various finance subjects. In other words, the first edition focuses more on Python, while the second edition is truly trying to apply Python to finance. The book starts by explaining topics exclusively related to Python. Then we deal with critical parts of Python, explaining concepts such as time value of money stock and bond evaluations, capital asset pricing model, multi-factor models, time series analysis, portfolio theory, options and futures. This book will help us to learn or review the basics of quantitative finance and apply Python to solve various problems, such as estimating IBM's market risk, running a Fama-French 3-factor, 5-factor, or Fama-French-Carhart 4 factor model, estimating the VaR of a 5-stock portfolio, estimating the optimal portfolio, and constructing the efficient frontier for a 20-stock portfolio with real-world stock, and with Monte Carlo Simulation. Later, we will also learn how to replicate the famous Black-Scholes-Merton option model and how to price exotic options such as the average price call option. Style and approach This book takes a step-by-step approach in explaining the libraries and modules in Python, and how they can be used to implement various aspects of quantitative finance. Each concept is explained in depth and supplemented with code examples for better understanding.
Book Synopsis Basic Python for Data Management, Finance, and Marketing by : Art Yudin
Download or read book Basic Python for Data Management, Finance, and Marketing written by Art Yudin and published by Apress. This book was released on 2021-09-07 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to gather, manipulate, and analyze data with Python. This book is a practical guide to help you get started with Python from ground zero and to the point where you can use coding for everyday tasks. Python, the most in-demand skill by employers, can be learned in a matter of months and a working knowledge will help you to advance your career. This book will teach you to crunch numbers, analyze big-data, and switch from spreadsheets to a faster and more efficient programming language. You'll benefit from the numerous real-life examples designed to meet current world challenges and from step-by-step guidance to become a confident Python user. Python is used in all aspects of financial industry, from algo trading, reporting and risk management to building valuations models and predictive machine learning programs. Basic Python for Data Management, Finance, and Marketing highlights how this language has become a useful skill with digital marketers, allowing them to analyze data more precisely and run more successful campaigns. What You'll Learn Get started with Python from square one Extend what's possible on excel with Python Automate tasks with Python Analyze data more precisely Who This Book Is For Professionals who want to find a job in the modern world or advance their careers within field of Python programming language.
Book Synopsis Python for Algorithmic Trading by : Yves Hilpisch
Download or read book Python for Algorithmic Trading written by Yves Hilpisch and published by O'Reilly Media. This book was released on 2020-11-12 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algorithmic trading, once the exclusive domain of institutional players, is now open to small organizations and individual traders using online platforms. The tool of choice for many traders today is Python and its ecosystem of powerful packages. In this practical book, author Yves Hilpisch shows students, academics, and practitioners how to use Python in the fascinating field of algorithmic trading. You'll learn several ways to apply Python to different aspects of algorithmic trading, such as backtesting trading strategies and interacting with online trading platforms. Some of the biggest buy- and sell-side institutions make heavy use of Python. By exploring options for systematically building and deploying automated algorithmic trading strategies, this book will help you level the playing field. Set up a proper Python environment for algorithmic trading Learn how to retrieve financial data from public and proprietary data sources Explore vectorization for financial analytics with NumPy and pandas Master vectorized backtesting of different algorithmic trading strategies Generate market predictions by using machine learning and deep learning Tackle real-time processing of streaming data with socket programming tools Implement automated algorithmic trading strategies with the OANDA and FXCM trading platforms
Book Synopsis Financial Modelling in Python by : Shayne Fletcher
Download or read book Financial Modelling in Python written by Shayne Fletcher and published by John Wiley & Sons. This book was released on 2010-10-28 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Fletcher and Gardner have created a comprehensive resource that will be of interest not only to those working in the field of finance, but also to those using numerical methods in other fields such as engineering, physics, and actuarial mathematics. By showing how to combine the high-level elegance, accessibility, and flexibility of Python, with the low-level computational efficiency of C++, in the context of interesting financial modeling problems, they have provided an implementation template which will be useful to others seeking to jointly optimize the use of computational and human resources. They document all the necessary technical details required in order to make external numerical libraries available from within Python, and they contribute a useful library of their own, which will significantly reduce the start-up costs involved in building financial models. This book is a must read for all those with a need to apply numerical methods in the valuation of financial claims." –David Louton, Professor of Finance, Bryant University This book is directed at both industry practitioners and students interested in designing a pricing and risk management framework for financial derivatives using the Python programming language. It is a practical book complete with working, tested code that guides the reader through the process of building a flexible, extensible pricing framework in Python. The pricing frameworks' loosely coupled fundamental components have been designed to facilitate the quick development of new models. Concrete applications to real-world pricing problems are also provided. Topics are introduced gradually, each building on the last. They include basic mathematical algorithms, common algorithms from numerical analysis, trade, market and event data model representations, lattice and simulation based pricing, and model development. The mathematics presented is kept simple and to the point. The book also provides a host of information on practical technical topics such as C++/Python hybrid development (embedding and extending) and techniques for integrating Python based programs with Microsoft Excel.
Download or read book Python for MBAs written by Mattan Griffel and published by Columbia University Press. This book was released on 2021-05-04 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the ads that track us to the maps that guide us, the twenty-first century runs on code. The business world is no different. Programming has become one of the fastest-growing topics at business schools around the world. An increasing number of MBAs are choosing to pursue careers in tech. For them and other professionals, having some basic coding knowledge is a must. This book is an introduction to programming with Python for MBA students and others in business positions who need a crash course. One of the most popular programming languages, Python is used for tasks such as building and running websites, data analysis, machine learning, and natural-language processing. Drawing on years of experience providing instruction in this material at Columbia Business School as well as extensive backgrounds in technology, entrepreneurship, and consulting, Mattan Griffel and Daniel Guetta teach the basics of programming from scratch. Beginning with fundamentals such as variables, strings, lists, and functions, they build up to data analytics and practical ways to derive value from large and complex datasets. They focus on business use cases throughout, using the real-world example of a major restaurant chain to offer a concrete look at what Python can do. Written for business students with no previous coding experience and those in business roles that include coding or working with coding teams, Python for MBAs is an indispensable introduction to a versatile and powerful programming language.
Book Synopsis Mastering Python for Finance by : James Ma Weiming
Download or read book Mastering Python for Finance written by James Ma Weiming and published by Packt Publishing Ltd. This book was released on 2015-04-29 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you are an undergraduate or graduate student, a beginner to algorithmic development and research, or a software developer in the financial industry who is interested in using Python for quantitative methods in finance, this is the book for you. It would be helpful to have a bit of familiarity with basic Python usage, but no prior experience is required.
Book Synopsis Hands-On Financial Trading with Python by : Jiri Pik
Download or read book Hands-On Financial Trading with Python written by Jiri Pik and published by Packt Publishing Ltd. This book was released on 2021-04-29 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build and backtest your algorithmic trading strategies to gain a true advantage in the market Key FeaturesGet quality insights from market data, stock analysis, and create your own data visualisationsLearn how to navigate the different features in Python's data analysis librariesStart systematically approaching quantitative research and strategy generation/backtesting in algorithmic tradingBook Description Creating an effective system to automate your trading can help you achieve two of every trader's key goals; saving time and making money. But to devise a system that will work for you, you need guidance to show you the ropes around building a system and monitoring its performance. This is where Hands-on Financial Trading with Python can give you the advantage. This practical Python book will introduce you to Python and tell you exactly why it's the best platform for developing trading strategies. You'll then cover quantitative analysis using Python, and learn how to build algorithmic trading strategies with Zipline using various market data sources. Using Zipline as the backtesting library allows access to complimentary US historical daily market data until 2018. As you advance, you will gain an in-depth understanding of Python libraries such as NumPy and pandas for analyzing financial datasets, and explore Matplotlib, statsmodels, and scikit-learn libraries for advanced analytics. As you progress, you'll pick up lots of skills like time series forecasting, covering pmdarima and Facebook Prophet. By the end of this trading book, you will be able to build predictive trading signals, adopt basic and advanced algorithmic trading strategies, and perform portfolio optimization to help you get —and stay—ahead of the markets. What you will learnDiscover how quantitative analysis works by covering financial statistics and ARIMAUse core Python libraries to perform quantitative research and strategy development using real datasetsUnderstand how to access financial and economic data in PythonImplement effective data visualization with MatplotlibApply scientific computing and data visualization with popular Python librariesBuild and deploy backtesting algorithmic trading strategiesWho this book is for If you're a financial trader or a data analyst who wants a hands-on introduction to designing algorithmic trading strategies, then this book is for you. You don't have to be a fully-fledged programmer to dive into this book, but knowing how to use Python's core libraries and a solid grasp on statistics will help you get the most out of this book.
Book Synopsis Applied Quantitative Finance by : Mauricio Garita
Download or read book Applied Quantitative Finance written by Mauricio Garita and published by Springer Nature. This book was released on 2021-09-03 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides both conceptual knowledge of quantitative finance and a hands-on approach to using Python. It begins with a description of concepts prior to the application of Python with the purpose of understanding how to compute and interpret results. This book offers practical applications in the field of finance concerning Python, a language that is more and more relevant in the financial arena due to big data. This will lead to a better understanding of finance as it gives a descriptive process for students, academics and practitioners.
Book Synopsis Advances in Financial Machine Learning by : Marcos Lopez de Prado
Download or read book Advances in Financial Machine Learning written by Marcos Lopez de Prado and published by John Wiley & Sons. This book was released on 2018-01-23 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn to understand and implement the latest machine learning innovations to improve your investment performance Machine learning (ML) is changing virtually every aspect of our lives. Today, ML algorithms accomplish tasks that – until recently – only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest. In the book, readers will learn how to: Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives Advances in Financial Machine Learning addresses real life problems faced by practitioners every day, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their individual setting. Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.
Book Synopsis Python for Finance Cookbook by : Eryk Lewinson
Download or read book Python for Finance Cookbook written by Eryk Lewinson and published by Packt Publishing Ltd. This book was released on 2020-01-31 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solve common and not-so-common financial problems using Python libraries such as NumPy, SciPy, and pandas Key FeaturesUse powerful Python libraries such as pandas, NumPy, and SciPy to analyze your financial dataExplore unique recipes for financial data analysis and processing with PythonEstimate popular financial models such as CAPM and GARCH using a problem-solution approachBook Description Python is one of the most popular programming languages used in the financial industry, with a huge set of accompanying libraries. In this book, you'll cover different ways of downloading financial data and preparing it for modeling. You'll calculate popular indicators used in technical analysis, such as Bollinger Bands, MACD, RSI, and backtest automatic trading strategies. Next, you'll cover time series analysis and models, such as exponential smoothing, ARIMA, and GARCH (including multivariate specifications), before exploring the popular CAPM and the Fama-French three-factor model. You'll then discover how to optimize asset allocation and use Monte Carlo simulations for tasks such as calculating the price of American options and estimating the Value at Risk (VaR). In later chapters, you'll work through an entire data science project in the financial domain. You'll also learn how to solve the credit card fraud and default problems using advanced classifiers such as random forest, XGBoost, LightGBM, and stacked models. You'll then be able to tune the hyperparameters of the models and handle class imbalance. Finally, you'll focus on learning how to use deep learning (PyTorch) for approaching financial tasks. By the end of this book, you’ll have learned how to effectively analyze financial data using a recipe-based approach. What you will learnDownload and preprocess financial data from different sourcesBacktest the performance of automatic trading strategies in a real-world settingEstimate financial econometrics models in Python and interpret their resultsUse Monte Carlo simulations for a variety of tasks such as derivatives valuation and risk assessmentImprove the performance of financial models with the latest Python librariesApply machine learning and deep learning techniques to solve different financial problemsUnderstand the different approaches used to model financial time series dataWho this book is for This book is for financial analysts, data analysts, and Python developers who want to learn how to implement a broad range of tasks in the finance domain. Data scientists looking to devise intelligent financial strategies to perform efficient financial analysis will also find this book useful. Working knowledge of the Python programming language is mandatory to grasp the concepts covered in the book effectively.
Book Synopsis Mastering Python for Finance by : James Ma Weiming
Download or read book Mastering Python for Finance written by James Ma Weiming and published by Packt Publishing Ltd. This book was released on 2019-04-30 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: Take your financial skills to the next level by mastering cutting-edge mathematical and statistical financial applications Key FeaturesExplore advanced financial models used by the industry and ways of solving them using PythonBuild state-of-the-art infrastructure for modeling, visualization, trading, and moreEmpower your financial applications by applying machine learning and deep learningBook Description The second edition of Mastering Python for Finance will guide you through carrying out complex financial calculations practiced in the industry of finance by using next-generation methodologies. You will master the Python ecosystem by leveraging publicly available tools to successfully perform research studies and modeling, and learn to manage risks with the help of advanced examples. You will start by setting up your Jupyter notebook to implement the tasks throughout the book. You will learn to make efficient and powerful data-driven financial decisions using popular libraries such as TensorFlow, Keras, Numpy, SciPy, and sklearn. You will also learn how to build financial applications by mastering concepts such as stocks, options, interest rates and their derivatives, and risk analytics using computational methods. With these foundations, you will learn to apply statistical analysis to time series data, and understand how time series data is useful for implementing an event-driven backtesting system and for working with high-frequency data in building an algorithmic trading platform. Finally, you will explore machine learning and deep learning techniques that are applied in finance. By the end of this book, you will be able to apply Python to different paradigms in the financial industry and perform efficient data analysis. What you will learnSolve linear and nonlinear models representing various financial problemsPerform principal component analysis on the DOW index and its componentsAnalyze, predict, and forecast stationary and non-stationary time series processesCreate an event-driven backtesting tool and measure your strategiesBuild a high-frequency algorithmic trading platform with PythonReplicate the CBOT VIX index with SPX options for studying VIX-based strategiesPerform regression-based and classification-based machine learning tasks for predictionUse TensorFlow and Keras in deep learning neural network architectureWho this book is for If you are a financial or data analyst or a software developer in the financial industry who is interested in using advanced Python techniques for quantitative methods in finance, this is the book you need! You will also find this book useful if you want to extend the functionalities of your existing financial applications by using smart machine learning techniques. Prior experience in Python is required.
Book Synopsis Quantitative Finance with Python by : Chris Kelliher
Download or read book Quantitative Finance with Python written by Chris Kelliher and published by CRC Press. This book was released on 2022-05-19 with total page 801 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantitative Finance with Python: A Practical Guide to Investment Management, Trading and Financial Engineering bridges the gap between the theory of mathematical finance and the practical applications of these concepts for derivative pricing and portfolio management. The book provides students with a very hands-on, rigorous introduction to foundational topics in quant finance, such as options pricing, portfolio optimization and machine learning. Simultaneously, the reader benefits from a strong emphasis on the practical applications of these concepts for institutional investors. Features Useful as both a teaching resource and as a practical tool for professional investors. Ideal textbook for first year graduate students in quantitative finance programs, such as those in master’s programs in Mathematical Finance, Quant Finance or Financial Engineering. Includes a perspective on the future of quant finance techniques, and in particular covers some introductory concepts of Machine Learning. Free-to-access repository with Python codes available at www.routledge.com/ 9781032014432 and on https://github.com/lingyixu/Quant-Finance-With-Python-Code.
Book Synopsis Derivatives Analytics with Python by : Yves Hilpisch
Download or read book Derivatives Analytics with Python written by Yves Hilpisch and published by John Wiley & Sons. This book was released on 2015-08-03 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: Supercharge options analytics and hedging using the power of Python Derivatives Analytics with Python shows you how to implement market-consistent valuation and hedging approaches using advanced financial models, efficient numerical techniques, and the powerful capabilities of the Python programming language. This unique guide offers detailed explanations of all theory, methods, and processes, giving you the background and tools necessary to value stock index options from a sound foundation. You'll find and use self-contained Python scripts and modules and learn how to apply Python to advanced data and derivatives analytics as you benefit from the 5,000+ lines of code that are provided to help you reproduce the results and graphics presented. Coverage includes market data analysis, risk-neutral valuation, Monte Carlo simulation, model calibration, valuation, and dynamic hedging, with models that exhibit stochastic volatility, jump components, stochastic short rates, and more. The companion website features all code and IPython Notebooks for immediate execution and automation. Python is gaining ground in the derivatives analytics space, allowing institutions to quickly and efficiently deliver portfolio, trading, and risk management results. This book is the finance professional's guide to exploiting Python's capabilities for efficient and performing derivatives analytics. Reproduce major stylized facts of equity and options markets yourself Apply Fourier transform techniques and advanced Monte Carlo pricing Calibrate advanced option pricing models to market data Integrate advanced models and numeric methods to dynamically hedge options Recent developments in the Python ecosystem enable analysts to implement analytics tasks as performing as with C or C++, but using only about one-tenth of the code or even less. Derivatives Analytics with Python — Data Analysis, Models, Simulation, Calibration and Hedging shows you what you need to know to supercharge your derivatives and risk analytics efforts.
Book Synopsis Machine Learning and Data Science Blueprints for Finance by : Hariom Tatsat
Download or read book Machine Learning and Data Science Blueprints for Finance written by Hariom Tatsat and published by "O'Reilly Media, Inc.". This book was released on 2020-10-01 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the next few decades, machine learning and data science will transform the finance industry. With this practical book, analysts, traders, researchers, and developers will learn how to build machine learning algorithms crucial to the industry. You’ll examine ML concepts and over 20 case studies in supervised, unsupervised, and reinforcement learning, along with natural language processing (NLP). Ideal for professionals working at hedge funds, investment and retail banks, and fintech firms, this book also delves deep into portfolio management, algorithmic trading, derivative pricing, fraud detection, asset price prediction, sentiment analysis, and chatbot development. You’ll explore real-life problems faced by practitioners and learn scientifically sound solutions supported by code and examples. This book covers: Supervised learning regression-based models for trading strategies, derivative pricing, and portfolio management Supervised learning classification-based models for credit default risk prediction, fraud detection, and trading strategies Dimensionality reduction techniques with case studies in portfolio management, trading strategy, and yield curve construction Algorithms and clustering techniques for finding similar objects, with case studies in trading strategies and portfolio management Reinforcement learning models and techniques used for building trading strategies, derivatives hedging, and portfolio management NLP techniques using Python libraries such as NLTK and scikit-learn for transforming text into meaningful representations
Download or read book Head First Python written by Paul Barry and published by "O'Reilly Media, Inc.". This book was released on 2016-11-21 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Want to learn the Python language without slogging your way through how-to manuals? With Head First Python, you’ll quickly grasp Python’s fundamentals, working with the built-in data structures and functions. Then you’ll move on to building your very own webapp, exploring database management, exception handling, and data wrangling. If you’re intrigued by what you can do with context managers, decorators, comprehensions, and generators, it’s all here. This second edition is a complete learning experience that will help you become a bonafide Python programmer in no time. Why does this book look so different? Based on the latest research in cognitive science and learning theory, Head First Pythonuses a visually rich format to engage your mind, rather than a text-heavy approach that puts you to sleep. Why waste your time struggling with new concepts? This multi-sensory learning experience is designed for the way your brain really works.