Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Attractors For Weakly Dissipative Equations
Download Attractors For Weakly Dissipative Equations full books in PDF, epub, and Kindle. Read online Attractors For Weakly Dissipative Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Attractors for Equations of Mathematical Physics by : Vladimir V. Chepyzhov
Download or read book Attractors for Equations of Mathematical Physics written by Vladimir V. Chepyzhov and published by American Mathematical Soc.. This book was released on 2002 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the major problems in the study of evolution equations of mathematical physics is the investigation of the behavior of the solutions to these equations when time is large or tends to infinity. The related important questions concern the stability of solutions or the character of the instability if a solution is unstable. In the last few decades, considerable progress in this area has been achieved in the study of autonomous evolution partial differential equations. For anumber of basic evolution equations of mathematical physics, it was shown that the long time behavior of their solutions can be characterized by a very important notion of a global attractor of the equation. In this book, the authors study new problems related to the theory of infinite-dimensionaldynamical systems that were intensively developed during the last 20 years. They construct the attractors and study their properties for various non-autonomous equations of mathematical physics: the 2D and 3D Navier-Stokes systems, reaction-diffusion systems, dissipative wave equations, the complex Ginzburg-Landau equation, and others. Since, as it is shown, the attractors usually have infinite dimension, the research is focused on the Kolmogorov $\varepsilon$-entropy of attractors. Upperestimates for the $\varepsilon$-entropy of uniform attractors of non-autonomous equations in terms of $\varepsilon$-entropy of time-dependent coefficients are proved. Also, the authors construct attractors for those equations of mathematical physics for which the solution of the corresponding Cauchyproblem is not unique or the uniqueness is not proved. The theory of the trajectory attractors for these equations is developed, which is later used to construct global attractors for equations without uniqueness. The method of trajectory attractors is applied to the study of finite-dimensional approximations of attractors. The perturbation theory for trajectory and global attractors is developed and used in the study of the attractors of equations with terms rapidly oscillating with respect tospatial and time variables. It is shown that the attractors of these equations are contained in a thin neighborhood of the attractor of the averaged equation. The book gives systematic treatment to the theory of attractors of autonomous and non-autonomous evolution equations of mathematical physics.It can be used both by specialists and by those who want to get acquainted with this rapidly growing and important area of mathematics.
Book Synopsis Attractors and Inertial Manifolds by : Boling Guo
Download or read book Attractors and Inertial Manifolds written by Boling Guo and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-07-09 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume work presents state-of-the-art mathematical theories and results on infinite-dimensional dynamical systems. Inertial manifolds, approximate inertial manifolds, discrete attractors and the dynamics of small dissipation are discussed in detail. The unique combination of mathematical rigor and physical background makes this work an essential reference for researchers and graduate students in applied mathematics and physics. The main emphasis in the first volume is on the mathematical analysis of attractors and inertial manifolds. This volume deals with the existence of global attractors, inertial manifolds and with the estimation of Hausdorff fractal dimension for some dissipative nonlinear evolution equations in modern physics. Known as well as many new results about the existence, regularity and properties of inertial manifolds and approximate inertial manifolds are also presented in the first volume. The second volume will be devoted to modern analytical tools and methods in infinite-dimensional dynamical systems. Contents Attractor and its dimension estimation Inertial manifold The approximate inertial manifold
Book Synopsis Global Attractors of Non-autonomous Dissipative Dynamical Systems by : David N. Cheban
Download or read book Global Attractors of Non-autonomous Dissipative Dynamical Systems written by David N. Cheban and published by World Scientific. This book was released on 2004 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of attractors of dynamical systems occupies an important position in the modern qualitative theory of differential equations. This engaging volume presents an authoritative overview of both autonomous and non-autonomous dynamical systems, including the global compact attractor.
Book Synopsis Infinite-Dimensional Dynamical Systems in Mechanics and Physics by : Roger Temam
Download or read book Infinite-Dimensional Dynamical Systems in Mechanics and Physics written by Roger Temam and published by Springer Science & Business Media. This book was released on 2013-12-11 with total page 670 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book the author presents the dynamical systems in infinite dimension, especially those generated by dissipative partial differential equations. This book attempts a systematic study of infinite dimensional dynamical systems generated by dissipative evolution partial differential equations arising in mechanics and physics and in other areas of sciences and technology. This second edition has been updated and extended.
Book Synopsis Attractors for Degenerate Parabolic Type Equations by : Messoud Efendiev
Download or read book Attractors for Degenerate Parabolic Type Equations written by Messoud Efendiev and published by American Mathematical Soc.. This book was released on 2013-09-26 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the long-time behavior of solutions of degenerate parabolic dissipative equations arising in the study of biological, ecological, and physical problems. Examples include porous media equations, -Laplacian and doubly nonlinear equations, as well as degenerate diffusion equations with chemotaxis and ODE-PDE coupling systems. For the first time, the long-time dynamics of various classes of degenerate parabolic equations, both semilinear and quasilinear, are systematically studied in terms of their global and exponential attractors. The long-time behavior of many dissipative systems generated by evolution equations of mathematical physics can be described in terms of global attractors. In the case of dissipative PDEs in bounded domains, this attractor usually has finite Hausdorff and fractal dimension. Hence, if the global attractor exists, its defining property guarantees that the dynamical system reduced to the attractor contains all of the nontrivial dynamics of the original system. Moreover, the reduced phase space is really "thinner" than the initial phase space. However, in contrast to nondegenerate parabolic type equations, for a quite large class of degenerate parabolic type equations, their global attractors can have infinite fractal dimension. The main goal of the present book is to give a detailed and systematic study of the well-posedness and the dynamics of the semigroup associated to important degenerate parabolic equations in terms of their global and exponential attractors. Fundamental topics include existence of attractors, convergence of the dynamics and the rate of convergence, as well as the determination of the fractal dimension and the Kolmogorov entropy of corresponding attractors. The analysis and results in this book show that there are new effects related to the attractor of such degenerate equations that cannot be observed in the case of nondegenerate equations in bounded domains. This book is published in cooperation with Real Sociedad Matemática Española (RSME).
Book Synopsis Infinite-Dimensional Dynamical Systems by : James C. Robinson
Download or read book Infinite-Dimensional Dynamical Systems written by James C. Robinson and published by Cambridge University Press. This book was released on 2001-04-23 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book treats the theory of global attractors, a recent development in the theory of partial differential equations, in a way that also includes much of the traditional elements of the subject. As such it gives a quick but directed introduction to some fundamental concepts, and by the end proceeds to current research problems. Since the subject is relatively new, this is the first book to attempt to treat these various topics in a unified and didactic way. It is intended to be suitable for first year graduate students.
Book Synopsis Dissipative Structures and Weak Turbulence by :
Download or read book Dissipative Structures and Weak Turbulence written by and published by Academic Press. This book was released on 2014-06-28 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dissipative Structure and Weak Turbulence provides an understanding of the emergence and evolution of structures in macroscopic systems. This book discusses the emergence of dissipative structures. Organized into 10 chapters, this book begins with an overview of the stability of a fluid layer with potentially unstable density stratification in the field of gravity. This text then explains the theoretical description of the dynamics of a given system at a formal level. Other chapters consider several examples of how such simplified models can be derived, complicating the picture progressively to account for other phenomena. This book discusses as well the theory and experiments on plain Rayleigh–Bénard convection by setting first the theoretical frame and deriving the analytical solution of the marginal stability problem. The final chapter deals with building a bridge between chaos as studied in weakly confined systems and more advanced turbulence in the most conventional sense. This book is a valuable resource for physicists.
Book Synopsis Attractors of Evolution Equations by : A.V. Babin
Download or read book Attractors of Evolution Equations written by A.V. Babin and published by Elsevier. This book was released on 1992-03-09 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: Problems, ideas and notions from the theory of finite-dimensional dynamical systems have penetrated deeply into the theory of infinite-dimensional systems and partial differential equations. From the standpoint of the theory of the dynamical systems, many scientists have investigated the evolutionary equations of mathematical physics. Such equations include the Navier-Stokes system, magneto-hydrodynamics equations, reaction-diffusion equations, and damped semilinear wave equations. Due to the recent efforts of many mathematicians, it has been established that the attractor of the Navier-Stokes system, which attracts (in an appropriate functional space) as t - ∞ all trajectories of this system, is a compact finite-dimensional (in the sense of Hausdorff) set. Upper and lower bounds (in terms of the Reynolds number) for the dimension of the attractor were found. These results for the Navier-Stokes system have stimulated investigations of attractors of other equations of mathematical physics. For certain problems, in particular for reaction-diffusion systems and nonlinear damped wave equations, mathematicians have established the existence of the attractors and their basic properties; furthermore, they proved that, as t - +∞, an infinite-dimensional dynamics described by these equations and systems uniformly approaches a finite-dimensional dynamics on the attractor U, which, in the case being considered, is the union of smooth manifolds. This book is devoted to these and several other topics related to the behaviour as t - ∞ of solutions for evolutionary equations.
Book Synopsis Nonlinear Evolution Equations by : Boling Guo
Download or read book Nonlinear Evolution Equations written by Boling Guo and published by Walter de Gruyter GmbH & Co KG. This book was released on 2019-11-05 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear Evolution Equation presents state-of-the-art theories and results on nonlinear evolution equation, showing related mathematical methods and applications. The basic concepts and research methods of infinite dimensional dynamical systems are discussed in detail. The unique combination of mathematical rigor and physical background makes this work an essential reference for researchers and students in applied mathematics and physics.
Book Synopsis Handbook of Differential Equations: Evolutionary Equations by : C.M. Dafermos
Download or read book Handbook of Differential Equations: Evolutionary Equations written by C.M. Dafermos and published by Elsevier. This book was released on 2008-10-06 with total page 609 pages. Available in PDF, EPUB and Kindle. Book excerpt: The material collected in this volume discusses the present as well as expected future directions of development of the field with particular emphasis on applications. The seven survey articles present different topics in Evolutionary PDE's, written by leading experts.- Review of new results in the area- Continuation of previous volumes in the handbook series covering Evolutionary PDEs- Written by leading experts
Book Synopsis Nonautonomous Dynamical Systems by : Peter E. Kloeden
Download or read book Nonautonomous Dynamical Systems written by Peter E. Kloeden and published by American Mathematical Soc.. This book was released on 2011-08-17 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of nonautonomous dynamical systems in both of its formulations as processes and skew product flows is developed systematically in this book. The focus is on dissipative systems and nonautonomous attractors, in particular the recently introduced concept of pullback attractors. Linearization theory, invariant manifolds, Lyapunov functions, Morse decompositions and bifurcations for nonautonomous systems and set-valued generalizations are also considered as well as applications to numerical approximations, switching systems and synchronization. Parallels with corresponding theories of control and random dynamical systems are briefly sketched. With its clear and systematic exposition, many examples and exercises, as well as its interesting applications, this book can serve as a text at the beginning graduate level. It is also useful for those who wish to begin their own independent research in this rapidly developing area.
Book Synopsis Infinite-Dimensional Dynamical Systems in Mechanics and Physics by : Roger Temam
Download or read book Infinite-Dimensional Dynamical Systems in Mechanics and Physics written by Roger Temam and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first attempt at a systematic study of infinite dimensional dynamical systems generated by dissipative evolution partial differential equations arising in mechanics and physics. Other areas of science and technology are included where appropriate. The relation between infinite and finite dimensional systems is presented from a synthetic viewpoint and equations considered include reaction-diffusion, Navier-Stokes and other fluid mechanics equations, magnetohydrodynamics, thermohydraulics, pattern formation, Ginzburg-Landau, damped wave and an introduction to inertial manifolds.
Book Synopsis Von Karman Evolution Equations by : Igor Chueshov
Download or read book Von Karman Evolution Equations written by Igor Chueshov and published by Springer Science & Business Media. This book was released on 2010-04-08 with total page 777 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the study of mathematical models that arise in the context of concrete - plications, the following two questions are of fundamental importance: (i) we- posedness of the model, including existence and uniqueness of solutions; and (ii) qualitative properties of solutions. A positive answer to the ?rst question, - ing of prime interest on purely mathematical grounds, also provides an important test of the viability of the model as a description of a given physical phenomenon. An answer or insight to the second question provides a wealth of information about the model, hence about the process it describes. Of particular interest are questions related to long-time behavior of solutions. Such an evolution property cannot be v- i?ed empirically, thus any in a-priori information about the long-time asymptotics can be used in predicting an ultimate long-time response and dynamical behavior of solutions. In recent years, this set of investigations has attracted a great deal of attention. Consequent efforts have then resulted in the creation and infusion of new methods and new tools that have been responsible for carrying out a successful an- ysis of long-time behavior of several classes of nonlinear PDEs.
Book Synopsis Attractors and Methods by : Boling Guo
Download or read book Attractors and Methods written by Boling Guo and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-07-09 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume work presents state-of-the-art mathematical theories and results on infinite-dimensional dynamical systems. Inertial manifolds, approximate inertial manifolds, discrete attractors and the dynamics of small dissipation are discussed in detail. The unique combination of mathematical rigor and physical background makes this work an essential reference for researchers and graduate students in applied mathematics and physics. The main emphasis in the fi rst volume is on the existence and properties for attractors and inertial manifolds. This volume highlights the use of modern analytical tools and methods such as the geometric measure method, center manifold theory in infinite dimensions, the Melnihov method, spectral analysis and so on for infinite-dimensional dynamical systems. The second volume includes the properties of global attractors, the calculation of discrete attractors, structures of small dissipative dynamical systems, and the existence and stability of solitary waves. Contents Discrete attractor and approximate calculation Some properties of global attractor Structures of small dissipative dynamical systems Existence and stability of solitary waves
Book Synopsis Evolution Equations and Approximations by : Kazufumi Ito
Download or read book Evolution Equations and Approximations written by Kazufumi Ito and published by World Scientific. This book was released on 2002 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation Ito (North Carolina State U.) and Kappel (U. of Graz, Austria) offer a unified presentation of the general approach for well-posedness results using abstract evolution equations, drawing from and modifying the work of K. and Y. Kobayashi and S. Oharu. They also explore abstract approximation results for evolution equations. Their work is not a textbook, but they explain how instructors can use various sections, or combinations of them, as a foundation for a range of courses. Annotation copyrighted by Book News, Inc., Portland, OR
Book Synopsis Strange Nonchaotic Attractors by : Ulrike Feudel
Download or read book Strange Nonchaotic Attractors written by Ulrike Feudel and published by World Scientific. This book was released on 2006 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first monograph devoted exclusively to strange nonchaotic attractors (SNA), recently discovered objects with a special kind of dynamical behavior between order and chaos in dissipative nonlinear systems under quasiperiodic driving. A historical review of the discovery and study of SNA, mathematical and physically-motivated examples, and a review of known experimental studies of SNA are presented. The main focus is on the theoretical analysis of strange nonchaotic behavior by means of different tools of nonlinear dynamics and statistical physics (bifurcation analysis, Lyapunov exponents, correlations and spectra, renormalization group). The relations of the subject to other fields of physics such as quantum chaos and solid state physics are also discussed. Key Features Topics are suitable for various disciplines dealing with nonlinear dynamics (mechanics, physics, nonlinear optics, hydrodynamics, chemical kinetics, etc.) A variety of theoretical tools is supplied to reveal different characteristics of strange nonchaotic behavior Readership: Graduate students and researchers in nonlinear science.
Book Synopsis Handbook of Mathematical Fluid Dynamics by : S. Friedlander
Download or read book Handbook of Mathematical Fluid Dynamics written by S. Friedlander and published by Elsevier. This book was released on 2007-05-16 with total page 725 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the fourth volume in a series of survey articles covering many aspects of mathematical fluid dynamics, a vital source of open mathematical problems and exciting physics.