Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Around The Research Of Vladimir Mazya Ii
Download Around The Research Of Vladimir Mazya Ii full books in PDF, epub, and Kindle. Read online Around The Research Of Vladimir Mazya Ii ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Around the Research of Vladimir Maz'ya I by : Ari Laptev
Download or read book Around the Research of Vladimir Maz'ya I written by Ari Laptev and published by Springer Science & Business Media. This book was released on 2009-12-02 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental contributions of Professor Maz'ya to the theory of function spaces and especially Sobolev spaces are well known and often play a key role in the study of different aspects of the theory, which is demonstrated, in particular, by presented new results and reviews from world-recognized specialists. Sobolev type spaces, extensions, capacities, Sobolev inequalities, pseudo-Poincare inequalities, optimal Hardy-Sobolev-Maz'ya inequalities, Maz'ya's isocapacitary inequalities in a measure-metric space setting and many other actual topics are discussed.
Book Synopsis Around the Research of Vladimir Maz'ya II by : Ari Laptev
Download or read book Around the Research of Vladimir Maz'ya II written by Ari Laptev and published by Springer Science & Business Media. This book was released on 2009-12-05 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topics of this volume are close to scientific interests of Professor Maz'ya and use, directly or indirectly, the fundamental influential Maz'ya's works penetrating, in a sense, the theory of PDEs. In particular, recent advantages in the study of semilinear elliptic equations, stationary Navier-Stokes equations, the Stokes system in convex polyhedra, periodic scattering problems, problems with perturbed boundary at a conic point, singular perturbations arising in elliptic shells and other important problems in mathematical physics are presented.
Book Synopsis Around the Research of Vladimir Maz'ya III by : Ari Laptev
Download or read book Around the Research of Vladimir Maz'ya III written by Ari Laptev and published by Springer Science & Business Media. This book was released on 2009-11-25 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume reflects the variety of areas where Maz'ya's results are fundamental, influential and/or pioneering. New advantages in such areas are presented by world-recognized experts and include, in particularly, Beurling's minimum principle, inverse hyperbolic problems, degenerate oblique derivative problems, the Lp-contractivity of the generated semigroups, some class of singular integral operators, general Cwikel-Lieb-Rozenblum and Lieb-Thirring inequalities,domains with rough boundaries, integral and supremum operators, finite rank Toeplitz operators, etc.
Book Synopsis Probabilistic Methods in Geometry, Topology and Spectral Theory by : Yaiza Canzani
Download or read book Probabilistic Methods in Geometry, Topology and Spectral Theory written by Yaiza Canzani and published by American Mathematical Soc.. This book was released on 2019-11-20 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the CRM Workshops on Probabilistic Methods in Spectral Geometry and PDE, held from August 22–26, 2016 and Probabilistic Methods in Topology, held from November 14–18, 2016 at the Centre de Recherches Mathématiques, Université de Montréal, Montréal, Quebec, Canada. Probabilistic methods have played an increasingly important role in many areas of mathematics, from the study of random groups and random simplicial complexes in topology, to the theory of random Schrödinger operators in mathematical physics. The workshop on Probabilistic Methods in Spectral Geometry and PDE brought together some of the leading researchers in quantum chaos, semi-classical theory, ergodic theory and dynamical systems, partial differential equations, probability, random matrix theory, mathematical physics, conformal field theory, and random graph theory. Its emphasis was on the use of ideas and methods from probability in different areas, such as quantum chaos (study of spectra and eigenstates of chaotic systems at high energy); geometry of random metrics and related problems in quantum gravity; solutions of partial differential equations with random initial conditions. The workshop Probabilistic Methods in Topology brought together researchers working on random simplicial complexes and geometry of spaces of triangulations (with connections to manifold learning); topological statistics, and geometric probability; theory of random groups and their properties; random knots; and other problems. This volume covers recent developments in several active research areas at the interface of Probability, Semiclassical Analysis, Mathematical Physics, Theory of Automorphic Forms and Graph Theory.
Book Synopsis Maximal Function Methods for Sobolev Spaces by : Juha Kinnunen
Download or read book Maximal Function Methods for Sobolev Spaces written by Juha Kinnunen and published by American Mathematical Soc.. This book was released on 2021-08-02 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses advances in maximal function methods related to Poincaré and Sobolev inequalities, pointwise estimates and approximation for Sobolev functions, Hardy's inequalities, and partial differential equations. Capacities are needed for fine properties of Sobolev functions and characterization of Sobolev spaces with zero boundary values. The authors consider several uniform quantitative conditions that are self-improving, such as Hardy's inequalities, capacity density conditions, and reverse Hölder inequalities. They also study Muckenhoupt weight properties of distance functions and combine these with weighted norm inequalities; notions of dimension are then used to characterize density conditions and to give sufficient and necessary conditions for Hardy's inequalities. At the end of the book, the theory of weak solutions to the p p-Laplace equation and the use of maximal function techniques is this context are discussed. The book is directed to researchers and graduate students interested in applications of geometric and harmonic analysis in Sobolev spaces and partial differential equations.
Download or read book Sobolev Spaces written by Vladimir Maz'ya and published by Springer. This book was released on 2013-12-21 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Sobolev spaces, i. e. the classes of functions with derivatives in L , occupy p an outstanding place in analysis. During the last two decades a substantial contribution to the study of these spaces has been made; so now solutions to many important problems connected with them are known. In the present monograph we consider various aspects of Sobolev space theory. Attention is paid mainly to the so called imbedding theorems. Such theorems, originally established by S. L. Sobolev in the 1930s, proved to be a useful tool in functional analysis and in the theory of linear and nonlinear par tial differential equations. We list some questions considered in this book. 1. What are the requirements on the measure f1, for the inequality q
Book Synopsis Jacques Hadamard by : Vladimir Gilelevič Mazʹâ
Download or read book Jacques Hadamard written by Vladimir Gilelevič Mazʹâ and published by American Mathematical Soc.. This book was released on 1999 with total page 604 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a fascinating story of the long life and great accomplishments of Jacques Hadamard (1865-1963), who was once called 'the living legend of mathematics'. As one of the last universal mathematicians, Hadamard's contributions to mathematics are landmarks in various fields. His life is linked with world history of the 20th century in a dramatic way. This work provides an inspiring view of the development of various branches of mathematics during the 19th and 20th centuries.Part I of the book portrays Hadamard's family, childhood and student years, scientific triumphs, and his personal life and trials during the first two world wars. The story is told of his involvement in the Dreyfus affair and his subsequent fight for justice and human rights. Also recounted are Hadamard's worldwide travels, his famous seminar, his passion for botany, his home orchestra, where he played the violin with Einstein, and his interest in the psychology of mathematical creativity. Hadamard's life is described in a readable and inviting way.The authors humorously weave throughout the text his jokes and the myths about him. They also movingly recount the tragic side of his life. Stories about his relatives and friends, and old letters and documents create an authentic and colorful picture. The book contains over 300 photographs and illustrations. Part II of the book includes a lucid overview of Hadamard's enormous work, spanning over six decades. The authors do an excellent job of connecting his results to current concerns.While the book is accessible to beginners, it also provides rich information of interest to experts. Vladimir Mazya and Tatyana Shaposhnikova were the 2003 laureates of the Insitut de France's Prix Alfred Verdaguer. One or more prizes are awarded each year, based on suggestions from the Academie francaise, the Academie de sciences, and the Academie de beaux-arts, for the most remarkable work in the arts, literature, and the sciences. In 2003, the award for excellence was granted in recognition of Mazya and Shaposhnikova's book, ""Jacques Hadamard, A Universal Mathematician"", which is both an historical book about a great citizen and a scientific book about a great mathematician.
Download or read book Sobolev Spaces written by Vladimir Maz'ya and published by Springer Science & Business Media. This book was released on 2011-02-11 with total page 882 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sobolev spaces play an outstanding role in modern analysis, in particular, in the theory of partial differential equations and its applications in mathematical physics. They form an indispensable tool in approximation theory, spectral theory, differential geometry etc. The theory of these spaces is of interest in itself being a beautiful domain of mathematics. The present volume includes basics on Sobolev spaces, approximation and extension theorems, embedding and compactness theorems, their relations with isoperimetric and isocapacitary inequalities, capacities with applications to spectral theory of elliptic differential operators as well as pointwise inequalities for derivatives. The selection of topics is mainly influenced by the author’s involvement in their study, a considerable part of the text is a report on his work in the field. Part of this volume first appeared in German as three booklets of Teubner-Texte zur Mathematik (1979, 1980). In the Springer volume “Sobolev Spaces”, published in English in 1985, the material was expanded and revised. The present 2nd edition is enhanced by many recent results and it includes new applications to linear and nonlinear partial differential equations. New historical comments, five new chapters and a significantly augmented list of references aim to create a broader and modern view of the area.
Book Synopsis Spectrum and Dynamics by : Dmitry Jakobson
Download or read book Spectrum and Dynamics written by Dmitry Jakobson and published by American Mathematical Soc.. This book was released on 2010-01-01 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains a collection of papers presented at the workshop on Spectrum and Dynamics held at the CRM in April 2008. In recent years. many new exciting connections have been established between the spectral theory of elliptic operators and the theory of dynamical systems. A number of articles in the proceedings highlight these discoveries. The volume features a diversity of topics. Such as quantum chaos, spectral geometry. Semiclassical analysis, number theory and ergodic theory. Apart from the research papers aimed at the experts, this book includes several survey articles accessible to a broad math ematical audience.
Book Synopsis Functional Analysis, Sobolev Spaces and Partial Differential Equations by : Haim Brezis
Download or read book Functional Analysis, Sobolev Spaces and Partial Differential Equations written by Haim Brezis and published by Springer Science & Business Media. This book was released on 2010-11-02 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.
Book Synopsis Elliptic Boundary Value Problems in Domains with Point Singularities by : Vladimir Kozlov
Download or read book Elliptic Boundary Value Problems in Domains with Point Singularities written by Vladimir Kozlov and published by American Mathematical Soc.. This book was released on 1997 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: For graduate students and research mathematicians interested in partial differential equations and who have a basic knowledge of functional analysis. Restricted to boundary value problems formed by differential operators, avoiding the use of pseudo- differential operators. Concentrates on fundamental results such as estimates for solutions in different function spaces, the Fredholm property of the problem's operator, regularity assertions, and asymptotic formulas for the solutions of near singular points. Considers the solutions in Sobolev spaces of both positive and negative orders. Annotation copyrighted by Book News, Inc., Portland, OR
Book Synopsis Recent Trends in Operator Theory and Partial Differential Equations by : Vladimir Maz'ya
Download or read book Recent Trends in Operator Theory and Partial Differential Equations written by Vladimir Maz'ya and published by Birkhäuser. This book was released on 2017-02-23 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is dedicated to the eminent Georgian mathematician Roland Duduchava on the occasion of his 70th birthday. It presents recent results on Toeplitz, Wiener-Hopf, and pseudodifferential operators, boundary value problems, operator theory, approximation theory, and reflects the broad spectrum of Roland Duduchava's research. The book is addressed to a wide audience of pure and applied mathematicians.
Author :William Charles Hector McLean Publisher :Cambridge University Press ISBN 13 :9780521663755 Total Pages :376 pages Book Rating :4.6/5 (637 download)
Book Synopsis Strongly Elliptic Systems and Boundary Integral Equations by : William Charles Hector McLean
Download or read book Strongly Elliptic Systems and Boundary Integral Equations written by William Charles Hector McLean and published by Cambridge University Press. This book was released on 2000-01-28 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 2000 book provided the first detailed exposition of the mathematical theory of boundary integral equations of the first kind on non-smooth domains.
Book Synopsis American Book Publishing Record by :
Download or read book American Book Publishing Record written by and published by . This book was released on 2005 with total page 854 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Asymptotic Methods in Equations of Mathematical Physics by : B Vainberg
Download or read book Asymptotic Methods in Equations of Mathematical Physics written by B Vainberg and published by CRC Press. This book was released on 1989-02-25 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Typed English translation of a monograph first published (in Russian) in 1982. Provides graduate students and researchers with usefully detailed discussion of most of the asymptotic methods standard these days to the work of mathematical physicists. The author prefers not to dwell in the heights of abstraction; he has written a broadly intelligble book, which is informed at every point by his secure command of major physical applications. An expensive but valuable contribution to the literature of an important but too-little-written- about field. Twelve chapters, references. (NW) Annotation copyrighted by Book News, Inc., Portland, OR
Book Synopsis Hardy Inequalities on Homogeneous Groups by : Michael Ruzhansky
Download or read book Hardy Inequalities on Homogeneous Groups written by Michael Ruzhansky and published by Springer. This book was released on 2019-07-02 with total page 579 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book provides an extensive treatment of Hardy inequalities and closely related topics from the point of view of Folland and Stein's homogeneous (Lie) groups. The place where Hardy inequalities and homogeneous groups meet is a beautiful area of mathematics with links to many other subjects. While describing the general theory of Hardy, Rellich, Caffarelli-Kohn-Nirenberg, Sobolev, and other inequalities in the setting of general homogeneous groups, the authors pay particular attention to the special class of stratified groups. In this environment, the theory of Hardy inequalities becomes intricately intertwined with the properties of sub-Laplacians and subelliptic partial differential equations. These topics constitute the core of this book and they are complemented by additional, closely related topics such as uncertainty principles, function spaces on homogeneous groups, the potential theory for stratified groups, and the potential theory for general Hörmander's sums of squares and their fundamental solutions. This monograph is the winner of the 2018 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics. As can be attested as the winner of such an award, it is a vital contribution to literature of analysis not only because it presents a detailed account of the recent developments in the field, but also because the book is accessible to anyone with a basic level of understanding of analysis. Undergraduate and graduate students as well as researchers from any field of mathematical and physical sciences related to analysis involving functional inequalities or analysis of homogeneous groups will find the text beneficial to deepen their understanding.
Book Synopsis Introduction To Second Order Partial Differential Equations, An: Classical And Variational Solutions by : Doina Cioranescu
Download or read book Introduction To Second Order Partial Differential Equations, An: Classical And Variational Solutions written by Doina Cioranescu and published by World Scientific Publishing Company. This book was released on 2017-11-27 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book extensively introduces classical and variational partial differential equations (PDEs) to graduate and post-graduate students in Mathematics. The topics, even the most delicate, are presented in a detailed way. The book consists of two parts which focus on second order linear PDEs. Part I gives an overview of classical PDEs, that is, equations which admit strong solutions, verifying the equations pointwise. Classical solutions of the Laplace, heat, and wave equations are provided. Part II deals with variational PDEs, where weak (variational) solutions are considered. They are defined by variational formulations of the equations, based on Sobolev spaces. A comprehensive and detailed presentation of these spaces is given. Examples of variational elliptic, parabolic, and hyperbolic problems with different boundary conditions are discussed.