Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Arithmetic On Elliptic Curves With Complex Multiplication
Download Arithmetic On Elliptic Curves With Complex Multiplication full books in PDF, epub, and Kindle. Read online Arithmetic On Elliptic Curves With Complex Multiplication ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Advanced Topics in the Arithmetic of Elliptic Curves by : Joseph H. Silverman
Download or read book Advanced Topics in the Arithmetic of Elliptic Curves written by Joseph H. Silverman and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the introduction to the first volume of The Arithmetic of Elliptic Curves (Springer-Verlag, 1986), I observed that "the theory of elliptic curves is rich, varied, and amazingly vast," and as a consequence, "many important topics had to be omitted." I included a brief introduction to ten additional topics as an appendix to the first volume, with the tacit understanding that eventually there might be a second volume containing the details. You are now holding that second volume. it turned out that even those ten topics would not fit Unfortunately, into a single book, so I was forced to make some choices. The following material is covered in this book: I. Elliptic and modular functions for the full modular group. II. Elliptic curves with complex multiplication. III. Elliptic surfaces and specialization theorems. IV. Neron models, Kodaira-Neron classification of special fibers, Tate's algorithm, and Ogg's conductor-discriminant formula. V. Tate's theory of q-curves over p-adic fields. VI. Neron's theory of canonical local height functions.
Book Synopsis Arithmetic Theory of Elliptic Curves by : J. Coates
Download or read book Arithmetic Theory of Elliptic Curves written by J. Coates and published by Springer Science & Business Media. This book was released on 1999-10-19 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the expanded versions of the lectures given by the authors at the C.I.M.E. instructional conference held in Cetraro, Italy, from July 12 to 19, 1997. The papers collected here are broad surveys of the current research in the arithmetic of elliptic curves, and also contain several new results which cannot be found elsewhere in the literature. Owing to clarity and elegance of exposition, and to the background material explicitly included in the text or quoted in the references, the volume is well suited to research students as well as to senior mathematicians.
Book Synopsis Arithmetic on Elliptic Curves with Complex Multiplication by : B.H. Gross
Download or read book Arithmetic on Elliptic Curves with Complex Multiplication written by B.H. Gross and published by Springer. This book was released on 2006-11-14 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis The Arithmetic of Elliptic Curves by : Joseph H. Silverman
Download or read book The Arithmetic of Elliptic Curves written by Joseph H. Silverman and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of elliptic curves is distinguished by its long history and by the diversity of the methods that have been used in its study. This book treats the arithmetic approach in its modern formulation, through the use of basic algebraic number theory and algebraic geometry. Following a brief discussion of the necessary algebro-geometric results, the book proceeds with an exposition of the geometry and the formal group of elliptic curves, elliptic curves over finite fields, the complex numbers, local fields, and global fields. Final chapters deal with integral and rational points, including Siegels theorem and explicit computations for the curve Y = X + DX, while three appendices conclude the whole: Elliptic Curves in Characteristics 2 and 3, Group Cohomology, and an overview of more advanced topics.
Book Synopsis Rational Points on Elliptic Curves by : Joseph H. Silverman
Download or read book Rational Points on Elliptic Curves written by Joseph H. Silverman and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of elliptic curves involves a blend of algebra, geometry, analysis, and number theory. This book stresses this interplay as it develops the basic theory, providing an opportunity for readers to appreciate the unity of modern mathematics. The book’s accessibility, the informal writing style, and a wealth of exercises make it an ideal introduction for those interested in learning about Diophantine equations and arithmetic geometry.
Book Synopsis Arithmetic on Elliptic Curves with Complex Multiplication by : B. H. Gross
Download or read book Arithmetic on Elliptic Curves with Complex Multiplication written by B. H. Gross and published by . This book was released on 2014-09-01 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Author :John William Scott Cassels Publisher :Cambridge University Press ISBN 13 :9780521425308 Total Pages :148 pages Book Rating :4.4/5 (253 download)
Book Synopsis LMSST: 24 Lectures on Elliptic Curves by : John William Scott Cassels
Download or read book LMSST: 24 Lectures on Elliptic Curves written by John William Scott Cassels and published by Cambridge University Press. This book was released on 1991-11-21 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained introductory text for beginning graduate students that is contemporary in approach without ignoring historical matters.
Book Synopsis Elliptic Curves (Second Edition) by : James S Milne
Download or read book Elliptic Curves (Second Edition) written by James S Milne and published by World Scientific. This book was released on 2020-08-20 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book uses the beautiful theory of elliptic curves to introduce the reader to some of the deeper aspects of number theory. It assumes only a knowledge of the basic algebra, complex analysis, and topology usually taught in first-year graduate courses.An elliptic curve is a plane curve defined by a cubic polynomial. Although the problem of finding the rational points on an elliptic curve has fascinated mathematicians since ancient times, it was not until 1922 that Mordell proved that the points form a finitely generated group. There is still no proven algorithm for finding the rank of the group, but in one of the earliest important applications of computers to mathematics, Birch and Swinnerton-Dyer discovered a relation between the rank and the numbers of points on the curve computed modulo a prime. Chapter IV of the book proves Mordell's theorem and explains the conjecture of Birch and Swinnerton-Dyer.Every elliptic curve over the rational numbers has an L-series attached to it.Hasse conjectured that this L-series satisfies a functional equation, and in 1955 Taniyama suggested that Hasse's conjecture could be proved by showing that the L-series arises from a modular form. This was shown to be correct by Wiles (and others) in the 1990s, and, as a consequence, one obtains a proof of Fermat's Last Theorem. Chapter V of the book is devoted to explaining this work.The first three chapters develop the basic theory of elliptic curves.For this edition, the text has been completely revised and updated.
Book Synopsis Rational Points on Modular Elliptic Curves by : Henri Darmon
Download or read book Rational Points on Modular Elliptic Curves written by Henri Darmon and published by American Mathematical Soc.. This book was released on 2004 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book surveys some recent developments in the arithmetic of modular elliptic curves. It places a special emphasis on the construction of rational points on elliptic curves, the Birch and Swinnerton-Dyer conjecture, and the crucial role played by modularity in shedding light on these two closely related issues. The main theme of the book is the theory of complex multiplication, Heegner points, and some conjectural variants. The first three chapters introduce the background and prerequisites: elliptic curves, modular forms and the Shimura-Taniyama-Weil conjecture, complex multiplication and the Heegner point construction. The next three chapters introduce variants of modular parametrizations in which modular curves are replaced by Shimura curves attached to certain indefinite quaternion algebras. The main new contributions are found in Chapters 7-9, which survey the author's attempts to extend the theory of Heegner points and complex multiplication to situations where the base field is not a CM field. Chapter 10 explains the proof of Kolyvagin's theorem, which relates Heegner points to the arithmetic of elliptic curves and leads to the best evidence so far for the Birch and Swinnerton-Dyer conjecture.
Book Synopsis Elliptic Curves and Arithmetic Invariants by : Haruzo Hida
Download or read book Elliptic Curves and Arithmetic Invariants written by Haruzo Hida and published by Springer Science & Business Media. This book was released on 2013-06-13 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a detailed account of the result of the author's recent Annals paper and JAMS paper on arithmetic invariant, including μ-invariant, L-invariant, and similar topics. This book can be regarded as an introductory text to the author's previous book p-Adic Automorphic Forms on Shimura Varieties. Written as a down-to-earth introduction to Shimura varieties, this text includes many examples and applications of the theory that provide motivation for the reader. Since it is limited to modular curves and the corresponding Shimura varieties, this book is not only a great resource for experts in the field, but it is also accessible to advanced graduate students studying number theory. Key topics include non-triviality of arithmetic invariants and special values of L-functions; elliptic curves over complex and p-adic fields; Hecke algebras; scheme theory; elliptic and modular curves over rings; and Shimura curves.
Book Synopsis Complex Multiplication by : Reinhard Schertz
Download or read book Complex Multiplication written by Reinhard Schertz and published by Cambridge University Press. This book was released on 2010-04-29 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a self-contained 2010 account of the state of the art in classical complex multiplication that includes recent results on rings of integers and applications to cryptography using elliptic curves. The author is exhaustive in his treatment, giving a thorough development of the theory of elliptic functions, modular functions and quadratic number fields and providing a concise summary of the results from class field theory. The main results are accompanied by numerical examples, equipping any reader with all the tools and formulas they need. Topics covered include: the construction of class fields over quadratic imaginary number fields by singular values of the modular invariant j and Weber's tau-function; explicit construction of rings of integers in ray class fields and Galois module structure; the construction of cryptographically relevant elliptic curves over finite fields; proof of Berwick's congruences using division values of the Weierstrass p-function; relations between elliptic units and class numbers.
Book Synopsis Introduction to the Arithmetic Theory of Automorphic Functions by : Gorō Shimura
Download or read book Introduction to the Arithmetic Theory of Automorphic Functions written by Gorō Shimura and published by Princeton University Press. This book was released on 1971-08-21 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of automorphic forms is playing increasingly important roles in several branches of mathematics, even in physics, and is almost ubiquitous in number theory. This book introduces the reader to the subject and in particular to elliptic modular forms with emphasis on their number-theoretical aspects. After two chapters geared toward elementary levels, there follows a detailed treatment of the theory of Hecke operators, which associate zeta functions to modular forms. At a more advanced level, complex multiplication of elliptic curves and abelian varieties is discussed. The main question is the construction of abelian extensions of certain algebraic number fields, which is traditionally called "Hilbert's twelfth problem." Another advanced topic is the determination of the zeta function of an algebraic curve uniformized by modular functions, which supplies an indispensable background for the recent proof of Fermat's last theorem by Wiles.
Book Synopsis Advances in Cryptology - CRYPTO 2001 by : Joe Kilian
Download or read book Advances in Cryptology - CRYPTO 2001 written by Joe Kilian and published by Springer. This book was released on 2003-05-15 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: Crypto 2001, the 21st Annual Crypto conference, was sponsored by the Int- national Association for Cryptologic Research (IACR) in cooperation with the IEEE Computer Society Technical Committee on Security and Privacy and the Computer Science Department of the University of California at Santa Barbara. The conference received 156 submissions, of which the program committee selected 34 for presentation; one was later withdrawn. These proceedings contain the revised versions of the 33 submissions that were presented at the conference. These revisions have not been checked for correctness, and the authors bear full responsibility for the contents of their papers. The conference program included two invited lectures. Mark Sherwin spoke on, \Quantum information processing in semiconductors: an experimentalist’s view." Daniel Weitzner spoke on, \Privacy, Authentication & Identity: A recent history of cryptographic struggles for freedom." The conference program also included its perennial \rump session," chaired by Stuart Haber, featuring short, informal talks on late{breaking research news. As I try to account for the hours of my life that ?ew o to oblivion, I realize that most of my time was spent cajoling talented innocents into spending even more time on my behalf. I have accumulated more debts than I can ever hope to repay. As mere statements of thanks are certainly insu cient, consider the rest of this preface my version of Chapter 11.
Book Synopsis Abelian l-Adic Representations and Elliptic Curves by : Jean-Pierre Serre
Download or read book Abelian l-Adic Representations and Elliptic Curves written by Jean-Pierre Serre and published by CRC Press. This book was released on 1997-11-15 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic book contains an introduction to systems of l-adic representations, a topic of great importance in number theory and algebraic geometry, as reflected by the spectacular recent developments on the Taniyama-Weil conjecture and Fermat's Last Theorem. The initial chapters are devoted to the Abelian case (complex multiplication), where one
Book Synopsis L-Functions and Arithmetic by : J. Coates
Download or read book L-Functions and Arithmetic written by J. Coates and published by Cambridge University Press. This book was released on 1991-02-22 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aimed at presenting nontechnical explanations, all the essays in this collection of papers from the 1989 LMS Durham Symposium on L-functions are the contributions of renowned algebraic number theory specialists.
Book Synopsis Elliptic Curves in Cryptography by : Ian F. Blake
Download or read book Elliptic Curves in Cryptography written by Ian F. Blake and published by Cambridge University Press. This book was released on 1999-07-08 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes knowledge built up within Hewlett-Packard over a number of years, and explains the mathematics behind practical implementations of elliptic curve systems. Due to the advanced nature of the mathematics there is a high barrier to entry for individuals and companies to this technology. Hence this book will be invaluable not only to mathematicians wanting to see how pure mathematics can be applied but also to engineers and computer scientists wishing (or needing) to actually implement such systems.
Book Synopsis Elliptic Curves by : Lawrence C. Washington
Download or read book Elliptic Curves written by Lawrence C. Washington and published by CRC Press. This book was released on 2008-04-03 with total page 533 pages. Available in PDF, EPUB and Kindle. Book excerpt: Like its bestselling predecessor, Elliptic Curves: Number Theory and Cryptography, Second Edition develops the theory of elliptic curves to provide a basis for both number theoretic and cryptographic applications. With additional exercises, this edition offers more comprehensive coverage of the fundamental theory, techniques, and application