Arithmetic Duality Theorems

Download Arithmetic Duality Theorems PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 440 pages
Book Rating : 4.3/5 (97 download)

DOWNLOAD NOW!


Book Synopsis Arithmetic Duality Theorems by : J. S. Milne

Download or read book Arithmetic Duality Theorems written by J. S. Milne and published by . This book was released on 1986 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here, published for the first time, are the complete proofs of the fundamental arithmetic duality theorems that have come to play an increasingly important role in number theory and arithmetic geometry. The text covers these theorems in Galois cohomology, ,tale cohomology, and flat cohomology and addresses applications in the above areas. The writing is expository and the book will serve as an invaluable reference text as well as an excellent introduction to the subject.

Galois Cohomology and Class Field Theory

Download Galois Cohomology and Class Field Theory PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030439011
Total Pages : 336 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Galois Cohomology and Class Field Theory by : David Harari

Download or read book Galois Cohomology and Class Field Theory written by David Harari and published by Springer Nature. This book was released on 2020-06-24 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate textbook offers an introduction to modern methods in number theory. It gives a complete account of the main results of class field theory as well as the Poitou-Tate duality theorems, considered crowning achievements of modern number theory. Assuming a first graduate course in algebra and number theory, the book begins with an introduction to group and Galois cohomology. Local fields and local class field theory, including Lubin-Tate formal group laws, are covered next, followed by global class field theory and the description of abelian extensions of global fields. The final part of the book gives an accessible yet complete exposition of the Poitou-Tate duality theorems. Two appendices cover the necessary background in homological algebra and the analytic theory of Dirichlet L-series, including the Čebotarev density theorem. Based on several advanced courses given by the author, this textbook has been written for graduate students. Including complete proofs and numerous exercises, the book will also appeal to more experienced mathematicians, either as a text to learn the subject or as a reference.

Cohomology of Number Fields

Download Cohomology of Number Fields PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540378898
Total Pages : 831 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Cohomology of Number Fields by : Jürgen Neukirch

Download or read book Cohomology of Number Fields written by Jürgen Neukirch and published by Springer Science & Business Media. This book was released on 2013-09-26 with total page 831 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition is a corrected and extended version of the first. It is a textbook for students, as well as a reference book for the working mathematician, on cohomological topics in number theory. In all it is a virtually complete treatment of a vast array of central topics in algebraic number theory. New material is introduced here on duality theorems for unramified and tamely ramified extensions as well as a careful analysis of 2-extensions of real number fields.

Etale Cohomology Theory

Download Etale Cohomology Theory PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814464805
Total Pages : 622 pages
Book Rating : 4.8/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Etale Cohomology Theory by : Lei Fu

Download or read book Etale Cohomology Theory written by Lei Fu and published by World Scientific. This book was released on 2011-01-31 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: New Edition available hereEtale cohomology is an important branch in arithmetic geometry. This book covers the main materials in SGA 1, SGA 4, SGA 4 1/2 and SGA 5 on etale cohomology theory, which includes decent theory, etale fundamental groups, Galois cohomology, etale cohomology, derived categories, base change theorems, duality, and l-adic cohomology. The prerequisites for reading this book are basic algebraic geometry and advanced commutative algebra.

Arithmetic Theory of Elliptic Curves

Download Arithmetic Theory of Elliptic Curves PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540481605
Total Pages : 269 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Arithmetic Theory of Elliptic Curves by : J. Coates

Download or read book Arithmetic Theory of Elliptic Curves written by J. Coates and published by Springer. This book was released on 2006-11-14 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the expanded versions of the lectures given by the authors at the C.I.M.E. instructional conference held in Cetraro, Italy, from July 12 to 19, 1997. The papers collected here are broad surveys of the current research in the arithmetic of elliptic curves, and also contain several new results which cannot be found elsewhere in the literature. Owing to clarity and elegance of exposition, and to the background material explicitly included in the text or quoted in the references, the volume is well suited to research students as well as to senior mathematicians.

Arithmetic Functions and Integer Products

Download Arithmetic Functions and Integer Products PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461385482
Total Pages : 469 pages
Book Rating : 4.4/5 (613 download)

DOWNLOAD NOW!


Book Synopsis Arithmetic Functions and Integer Products by : P.D.T.A. Elliott

Download or read book Arithmetic Functions and Integer Products written by P.D.T.A. Elliott and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: Every positive integer m has a product representation of the form where v, k and the ni are positive integers, and each Ei = ± I. A value can be given for v which is uniform in the m. A representation can be computed so that no ni exceeds a certain fixed power of 2m, and the number k of terms needed does not exceed a fixed power of log 2m. Consider next the collection of finite probability spaces whose associated measures assume only rational values. Let hex) be a real-valued function which measures the information in an event, depending only upon the probability x with which that event occurs. Assuming hex) to be non negative, and to satisfy certain standard properties, it must have the form -A(x log x + (I - x) 10g(I -x». Except for a renormalization this is the well-known function of Shannon. What do these results have in common? They both apply the theory of arithmetic functions. The two widest classes of arithmetic functions are the real-valued additive and the complex-valued multiplicative functions. Beginning in the thirties of this century, the work of Erdos, Kac, Kubilius, Turan and others gave a discipline to the study of the general value distribution of arithmetic func tions by the introduction of ideas, methods and results from the theory of Probability. I gave an account of the resulting extensive and still developing branch of Number Theory in volumes 239/240 of this series, under the title Probabilistic Number Theory.

Algebra: Chapter 0

Download Algebra: Chapter 0 PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 147046571X
Total Pages : 713 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Algebra: Chapter 0 by : Paolo Aluffi

Download or read book Algebra: Chapter 0 written by Paolo Aluffi and published by American Mathematical Soc.. This book was released on 2021-11-09 with total page 713 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.

Nilpotence and Periodicity in Stable Homotopy Theory

Download Nilpotence and Periodicity in Stable Homotopy Theory PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 9780691025728
Total Pages : 228 pages
Book Rating : 4.0/5 (257 download)

DOWNLOAD NOW!


Book Synopsis Nilpotence and Periodicity in Stable Homotopy Theory by : Douglas C. Ravenel

Download or read book Nilpotence and Periodicity in Stable Homotopy Theory written by Douglas C. Ravenel and published by Princeton University Press. This book was released on 1992-11-08 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nilpotence and Periodicity in Stable Homotopy Theory describes some major advances made in algebraic topology in recent years, centering on the nilpotence and periodicity theorems, which were conjectured by the author in 1977 and proved by Devinatz, Hopkins, and Smith in 1985. During the last ten years a number of significant advances have been made in homotopy theory, and this book fills a real need for an up-to-date text on that topic. Ravenel's first few chapters are written with a general mathematical audience in mind. They survey both the ideas that lead up to the theorems and their applications to homotopy theory. The book begins with some elementary concepts of homotopy theory that are needed to state the problem. This includes such notions as homotopy, homotopy equivalence, CW-complex, and suspension. Next the machinery of complex cobordism, Morava K-theory, and formal group laws in characteristic p are introduced. The latter portion of the book provides specialists with a coherent and rigorous account of the proofs. It includes hitherto unpublished material on the smash product and chromatic convergence theorems and on modular representations of the symmetric group.

Rational Points on Varieties

Download Rational Points on Varieties PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470437732
Total Pages : 358 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Rational Points on Varieties by : Bjorn Poonen

Download or read book Rational Points on Varieties written by Bjorn Poonen and published by American Mathematical Soc.. This book was released on 2017-12-13 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is motivated by the problem of determining the set of rational points on a variety, but its true goal is to equip readers with a broad range of tools essential for current research in algebraic geometry and number theory. The book is unconventional in that it provides concise accounts of many topics instead of a comprehensive account of just one—this is intentionally designed to bring readers up to speed rapidly. Among the topics included are Brauer groups, faithfully flat descent, algebraic groups, torsors, étale and fppf cohomology, the Weil conjectures, and the Brauer-Manin and descent obstructions. A final chapter applies all these to study the arithmetic of surfaces. The down-to-earth explanations and the over 100 exercises make the book suitable for use as a graduate-level textbook, but even experts will appreciate having a single source covering many aspects of geometry over an unrestricted ground field and containing some material that cannot be found elsewhere.

Number Theory and Algebraic Geometry

Download Number Theory and Algebraic Geometry PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521545181
Total Pages : 312 pages
Book Rating : 4.5/5 (451 download)

DOWNLOAD NOW!


Book Synopsis Number Theory and Algebraic Geometry by : Miles Reid

Download or read book Number Theory and Algebraic Geometry written by Miles Reid and published by Cambridge University Press. This book was released on 2003 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume honors Sir Peter Swinnerton-Dyer's mathematical career spanning more than 60 years' of amazing creativity in number theory and algebraic geometry.

The Mathematics of Chip-Firing

Download The Mathematics of Chip-Firing PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 135180099X
Total Pages : 308 pages
Book Rating : 4.3/5 (518 download)

DOWNLOAD NOW!


Book Synopsis The Mathematics of Chip-Firing by : Caroline J. Klivans

Download or read book The Mathematics of Chip-Firing written by Caroline J. Klivans and published by CRC Press. This book was released on 2018-11-15 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Mathematics of Chip-firing is a solid introduction and overview of the growing field of chip-firing. It offers an appreciation for the richness and diversity of the subject. Chip-firing refers to a discrete dynamical system — a commodity is exchanged between sites of a network according to very simple local rules. Although governed by local rules, the long-term global behavior of the system reveals fascinating properties. The Fundamental properties of chip-firing are covered from a variety of perspectives. This gives the reader both a broad context of the field and concrete entry points from different backgrounds. Broken into two sections, the first examines the fundamentals of chip-firing, while the second half presents more general frameworks for chip-firing. Instructors and students will discover that this book provides a comprehensive background to approaching original sources. Features: Provides a broad introduction for researchers interested in the subject of chip-firing The text includes historical and current perspectives Exercises included at the end of each chapter About the Author: Caroline J. Klivans received a BA degree in mathematics from Cornell University and a PhD in applied mathematics from MIT. Currently, she is an Associate Professor in the Division of Applied Mathematics at Brown University. She is also an Associate Director of ICERM (Institute for Computational and Experimental Research in Mathematics). Before coming to Brown she held positions at MSRI, Cornell and the University of Chicago. Her research is in algebraic, geometric and topological combinatorics.

Abelian Varieties

Download Abelian Varieties PDF Online Free

Author :
Publisher : Debolsillo
ISBN 13 : 9788185931869
Total Pages : 0 pages
Book Rating : 4.9/5 (318 download)

DOWNLOAD NOW!


Book Synopsis Abelian Varieties by : David Mumford

Download or read book Abelian Varieties written by David Mumford and published by Debolsillo. This book was released on 2008 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a reprinting of the revised second edition (1974) of David Mumford's classic 1970 book. It gives a systematic account of the basic results about abelian varieties. It includes expositions of analytic methods applicable over the ground field of complex numbers, as well as of scheme-theoretic methods used to deal with inseparable isogenies when the ground field has positive characteristic. A self-contained proof of the existence of the dual abelian variety is given. The structure of the ring of endomorphisms of an abelian variety is discussed. These are appendices on Tate's theorem on endomorphisms of abelian varieties over finite fields (by C. P. Ramanujam) and on the Mordell-Weil theorem (by Yuri Manin). David Mumford was awarded the 2007 AMS Steele Prize for Mathematical Exposition. According to the citation: ``Abelian Varieties ... remains the definitive account of the subject ... the classical theory is beautifully intertwined with the modern theory, in a way which sharply illuminates both ... [It] will remain for the foreseeable future a classic to which the reader returns over and over.''

Algebraic Groups

Download Algebraic Groups PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107167485
Total Pages : 665 pages
Book Rating : 4.1/5 (71 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Groups by : J. S. Milne

Download or read book Algebraic Groups written by J. S. Milne and published by Cambridge University Press. This book was released on 2017-09-21 with total page 665 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive introduction to the theory of algebraic group schemes over fields, based on modern algebraic geometry, with few prerequisites.

Lecture Notes on Motivic Cohomology

Download Lecture Notes on Motivic Cohomology PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821838471
Total Pages : 240 pages
Book Rating : 4.8/5 (384 download)

DOWNLOAD NOW!


Book Synopsis Lecture Notes on Motivic Cohomology by : Carlo Mazza

Download or read book Lecture Notes on Motivic Cohomology written by Carlo Mazza and published by American Mathematical Soc.. This book was released on 2006 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The notion of a motive is an elusive one, like its namesake "the motif" of Cezanne's impressionist method of painting. Its existence was first suggested by Grothendieck in 1964 as the underlying structure behind the myriad cohomology theories in Algebraic Geometry. We now know that there is a triangulated theory of motives, discovered by Vladimir Voevodsky, which suffices for the development of a satisfactory Motivic Cohomology theory. However, the existence of motives themselves remains conjectural. This book provides an account of the triangulated theory of motives. Its purpose is to introduce Motivic Cohomology, to develop its main properties, and finally to relate it to other known invariants of algebraic varieties and rings such as Milnor K-theory, etale cohomology, and Chow groups. The book is divided into lectures, grouped in six parts. The first part presents the definition of Motivic Cohomology, based upon the notion of presheaves with transfers. Some elementary comparison theorems are given in this part. The theory of (etale, Nisnevich, and Zariski) sheaves with transfers is developed in parts two, three, and six, respectively. The theoretical core of the book is the fourth part, presenting the triangulated category of motives. Finally, the comparison with higher Chow groups is developed in part five. The lecture notes format is designed for the book to be read by an advanced graduate student or an expert in a related field. The lectures roughly correspond to one-hour lectures given by Voevodsky during the course he gave at the Institute for Advanced Study in Princeton on this subject in 1999-2000. In addition, many of the original proofs have been simplified and improved so that this book will also be a useful tool for research mathematicians. Information for our distributors: Titles in this series are copublished with the Clay Mathematics Institute (Cambridge, MA).

Arithmetic of L-functions

Download Arithmetic of L-functions PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821886983
Total Pages : 517 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Arithmetic of L-functions by : Cristian Popescu

Download or read book Arithmetic of L-functions written by Cristian Popescu and published by American Mathematical Soc.. This book was released on with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Algebraic Groups and Class Fields

Download Algebraic Groups and Class Fields PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461210356
Total Pages : 220 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Groups and Class Fields by : Jean-Pierre Serre

Download or read book Algebraic Groups and Class Fields written by Jean-Pierre Serre and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Translation of the French Edition

The Arithmetic of Elliptic Curves

Download The Arithmetic of Elliptic Curves PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387094946
Total Pages : 525 pages
Book Rating : 4.3/5 (87 download)

DOWNLOAD NOW!


Book Synopsis The Arithmetic of Elliptic Curves by : Joseph H. Silverman

Download or read book The Arithmetic of Elliptic Curves written by Joseph H. Silverman and published by Springer Science & Business Media. This book was released on 2009-04-20 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of elliptic curves is distinguished by its long history and by the diversity of the methods that have been used in its study. This book treats the arithmetic approach in its modern formulation, through the use of basic algebraic number theory and algebraic geometry. Following a brief discussion of the necessary algebro-geometric results, the book proceeds with an exposition of the geometry and the formal group of elliptic curves, elliptic curves over finite fields, the complex numbers, local fields, and global fields. Final chapters deal with integral and rational points, including Siegels theorem and explicit computations for the curve Y = X + DX, while three appendices conclude the whole: Elliptic Curves in Characteristics 2 and 3, Group Cohomology, and an overview of more advanced topics.